R语言神经网络模型金融应用预测上证指数时间序列可视化

本文使用R语言构建神经网络模型预测上证指数,通过对比模型一(基于昨天和前天收盘价)与模型二(增加大前天收盘价)的预测效果,发现模型一的拟合度更高。通过神经网络模型的可视化,展示其结构和预测能力,为金融数据分析提供参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


全文链接:https://tecdat.cn/?p=35212

本文旨在利用神经网络模型来帮助客户预测上证指数的收盘价,通过分析不同历史数据作为输入,建立模型并进行预测点击文末“阅读原文”获取完整代码数据)。

相关视频

具体而言,我们设计了两个不同的模型,分别使用不同组合的历史收盘价数据作为输入,以比较它们在预测今天的收盘价方面的效果。

获取上证指数数据

首先,我们获取了上证指数的数据,并进行了必要的数据处理,将列名命名为"Open"、"High"、"Low"、"Close"、"Volume"和"Adjusted"。下面是上证指数数据的前几行示例:

names(df)<-c("Open","High","Low","Close","Volume","Adjusted")  
head(df)

0e14233297515bff011fe2b945fa53f7.png

绘制指数走势

接着,我们绘制了上证指数的走势图,以直观展示指数的波动情况和趋势变化:

8e3856fac06b7ac61ab7c6b0ec8818d9.png

模型一

在模型一中,我们使用昨天和前天的收盘价作为输入数据,建立神经网络模型来预测今天的收盘价。首先,我们生成训练数据,将收盘价和前两天的数据整合到一个数据框中:

获取滞后数据。

当为时间滞后效应移动列时,某些行将包含 NA(非数字)值。

将收盘价和昨天与前天的数据放到一个数据,并且使用昨天和前天的收盘价建立神经网络模型,预测今天的收盘。

# 生成训练数据
train <- data.frame(  
  Close=prices$Close,  
  prev_Close_1=shift(prices$Close, 1),

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值