【视频】N-Gram、逻辑回归反欺诈模型文本分析招聘网站欺诈可视化讲解|附数据代码...

本文通过视频教程演示如何使用N-Gram和逻辑回归模型,结合R语言分析招聘网站欺诈行为。通过数据清洗、特征工程、建模和评估,揭示欺诈特征并提供防范策略。内容包括探索性数据分析、特征工程、模型构建和ROC曲线评估。
摘要由CSDN通过智能技术生成

原文链接:https://tecdat.cn/?p=36028

分析师:Zhuo Chen

随着互联网的快速发展,招聘网站已成为求职者与雇主之间的重要桥梁。然而,随之而来的欺诈行为也日益猖獗,给求职者带来了极大的困扰和风险点击文末“阅读原文”获取完整代码数据)。

视频

因此,如何帮助客户有效地识别和防范招聘网站上的欺诈行为,已成为一个亟待解决的问题。

98499e9a2e28674d00150c00e4bb3911.png

逻辑回归模型作为一种强大的分类工具,在识别欺诈行为方面具有独特的优势。它能够根据输入的特征,通过训练和学习,自动发现数据中的规律和模式,从而实现对欺诈行为的准确预测。在招聘网站的欺诈检测中,逻辑回归模型可以帮助我们快速识别出潜在的欺诈行为,保护求职者的合法权益。

本文将通过视频讲解,展示如何用N-Gram、逻辑回归模型分析招聘网站欺诈可视化,并结合R语言逻辑回归logistic模型ROC曲线可视化分析2个例子的代码数据,为读者提供一套完整的实践数据分析流程。

一、数据整理

首先,我们从招聘网站上收集了大量数据,包括职位名称、职位描述、行业分类、岗位要求等信息。接下来,我们对数据进行了清洗和预处理,去除空值、重复项和异常值,确保数据的准确性和完整性。

1636b9f22324e6a7ea41dbae5e7d37e9.png

二、探索性数据分析

为了深入了解数据的分布和特征,我们进行了探索性数据分析。使用直方图、箱线图等可视化工具,我们分析了各个特征的分布情况,包括职位数量、行业分布、薪资水平等。此外,我们还利用词云图对职位描述中的关键词进行了可视化展示,以便更直观地了解招聘市场的热点和趋势。

f2e7ef1c21fe44d6f555cdadca7dd382.png

ac97a2a0961cc7ebb84feb3efab670f2.png

0c0fbe6ef946b7e1376b9cf73d257f12.png


点击标题查阅往期内容

0d28765839b193c00e415eea358bd824.png

数据分享|R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据

outside_default.png

左右滑动查看更多

outside_default.png

01

e814c397e7ce11983c78143033d66a3f.png

02

ada2d7f8775b158242c318390646e4af.png

03

d239aa3371d46b2feb45bba8f6025e06.png

04

93de2f05a69be0ce704b39ffd1e183ad.png

三、特征工程

特征工程是机器学习建模的关键步骤。我们首先对文字信息进行了预处理,包括分词、去除停用词、词干提取等。接着,我们利用N-Gram分析提取了职位描述中的词组特征,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值