文章目录
一、震惊!原来爬虫可以这样偷懒?
(前排提示:文末有完整代码模板)咱们搞爬虫的都知道,每次看到网页数据想抓取时,最头疼的就是要手动分析请求参数、构造请求头。但今天我要安利的这个神器——Curl转Python工具,绝对能让你的效率提升300%!!!
最近在做一个跨境电商数据采集项目时,我发现了个宝藏网站:只要复制浏览器开发者工具里的Curl命令,就能自动生成Python爬虫代码!这简直是开挂啊!(老板再也不用担心我加班了)
二、工具准备篇(手把手教学)
2.1 环境配置
先甩个requirements.txt:
# requirements.txt
requests==2.31.0
curl_cffi==0.5.9
fake_useragent==1.3.0
安装命令(记得开代理):
pip install -r requirements.txt
2.2 核心工具揭秘
这里推荐两个超实用的在线转换工具:
- curlconverter.com(网页版一键转换)
- Postman(最新版自带代码生成功能)
举个🌰,这是某招聘网站的Curl命令:
curl 'https://zhaopin.com/search?keyword=python' \
-H 'User-Agent: Mozilla/5.0' \
--proxy http://127.0.0.1:7890
转换后的Python代码长这样:
import requests
proxies = {
'http': 'http://127.0.0.1:7890',
'https': 'http://127.0.0.1:7890'
}
headers = {
'User-Agent': 'Mozilla/5.0',
}
response = requests.get(
'https://zhaopin.com/search',
params={'keyword': 'python'},
headers=headers,
proxies=proxies
)
(超级重要)这里有个坑!很多网站会检测TLS指纹,建议改用curl_cffi
库:
from curl_cffi import requests
response = requests.get(
'https://zhaopin.com/search',
params={'keyword': 'python'},
headers=headers,
proxies=proxies,
impersonate="chrome110" # 伪装浏览器指纹
)
三、实战:批量抓取招聘信息
3.1 反爬克星配置
from fake_useragent import UserAgent
import random
# 动态UA生成器
ua = UserAgent()
headers = {
'User-Agent': ua.random,
'Accept-Language': 'zh-CN,zh;q=0.9'
}
# 代理IP池配置(推荐青果代理/亮数据)
PROXY_POOL = [
'http://user:pass@ip1:port',
'http://user:pass@ip2:port',
# ...至少准备20个IP
]
def get_random_proxy():
return {'http': random.choice(PROXY_POOL)}
3.2 数据解析黑科技
XPath和正则表达式双剑合璧:
import re
from lxml import etree
def parse_job_list(html):
root = etree.HTML(html)
jobs = root.xpath('//div[@class="job-item"]')
for job in jobs:
title = job.xpath('.//h3/text()')[0].strip()
salary = re.search(r'\d+-\d+万', job.text).group()
yield {'title': title, 'salary': salary}
3.3 完整代码模板
from tqdm import tqdm # 进度条神器
def main():
for page in tqdm(range(1, 51)): # 抓取50页
try:
response = requests.get(
f'https://zhaopin.com/search?page={page}',
headers=headers,
proxies=get_random_proxy(),
timeout=10
)
for job in parse_job_list(response.text):
# 这里存数据库/CSV
print(job)
time.sleep(random.uniform(1, 3)) # 随机延迟
except Exception as e:
print(f'第{page}页抓取出错:', str(e))
四、法律红线警示(必看!!!)
虽然工具很强大,但千万要注意:
- 遵守网站的robots.txt协议
- 单次请求间隔≥1秒
- 日请求量不超过网站总数据量的10%
- 绝对不要抓取个人隐私数据
(血泪教训)去年朋友公司因为高频抓取某电商数据,收到律师函赔了50万!所以建议:
- 使用优质代理IP(推荐付费服务)
- 设置合理的请求频率
- 添加User-Agent轮换机制
五、升级玩法:自动化部署
用Docker+Scrapy打造企业级爬虫:
# Dockerfile
FROM python:3.9
RUN pip install scrapy curl_cffi
COPY . /app
WORKDIR /app
CMD ["scrapy", "crawl", "job_spider"]
定时任务配置(crontab):
0 2 * * * docker-compose run --rm spider # 每天凌晨2点执行
六、常见坑位指南
Q:为什么返回403错误?
A:八成是被反爬了!检查:
✅ 是否更换User-Agent
✅ 代理IP是否有效
✅ 请求头是否完整
Q:数据突然抓不到了?
A:大概率是网站改版了!快用diff
工具对比新旧HTML结构
Q:怎么突破登录限制?
A:可以尝试:
- 使用selenium模拟登录获取cookies
- 逆向APP端接口
- (终极方案)联系网站合作
最后送大家一个调试神器——Mitmproxy,抓包分析一把梭!下期咱们聊聊《如何用AI自动生成XPath选择器》,保证让你们惊掉下巴!(记得点个关注不迷路)