给定素数a,b,c,d,求1到n中的整数中至少能整除这4个元素中的一一个的数有几个?
输入两行:第一行为一个整数n 第二行为四个数a,b,c,d,数据保证a,b,c,d为互不相同的素数。
输出仅一行,输出答案即可
一般常用代码的写法是这样的:
#include <stdio.h>
int main()
{
int a,b,c,d,n,i,count=0;
scanf("%d",&n);
scanf("%d%d%d%d",&a,&b,&c,&d);
for(i=2;i<=n;i++)
if(i%a==0 || i%b==0 || i%c==0 || i%d==0)
count++;
printf("%d",count);
return 0;
}
似乎代码还不错,但从时间复杂度来说,需要O(n),有没有办法更优化呢。参考如下:
#include <stdio.h>
int main()
{
int a,b,c,d,n;
scanf("%d",&n);
scanf("%d%d%d%d",&a,&b,&c,&d);
int count= 0;
count = n/a+n/b+n/c+n/d-n/(a*b)-n/(a*c)-n/(a*d)-n/(b*c)-n/(b*d)-n/(c*d) + n/(a*b*c) + n/(a*b*d) + n/(a*c*d)+n/(b*c*d)-n/(a*b*c*d);
printf("%d\n",count);
return 0;
}
能够被素数整除的数的数量,就是n除以素数的商。但存在重复统计的情况,比如a=2,b=3,那么6就会统计了两次。因此需要减去n/(a*b)的商。但对于a=2,b=3,c=5,来说,30这个数被统计了3次,减去n/(a*b)这种做法,又会被减去3次,因此还要加上n/(a*b*c)的数量。以此类推,最后还需要减去n/(a*b*c*d)的数量