计算指定整数内能够整除指定多个素数的整数数量统计算法优化

给定素数a,b,c,d,求1到n中的整数中至少能整除这4个元素中的一一个的数有几个?

输入两行:第一行为一个整数n 第二行为四个数a,b,c,d,数据保证a,b,c,d为互不相同的素数。

输出仅一行,输出答案即可

一般常用代码的写法是这样的:

#include <stdio.h>
int main()
{
   int a,b,c,d,n,i,count=0;
   scanf("%d",&n);
   scanf("%d%d%d%d",&a,&b,&c,&d);
   for(i=2;i<=n;i++)
      if(i%a==0 || i%b==0 || i%c==0 || i%d==0)
            count++;
   printf("%d",count);
   return 0;
}

似乎代码还不错,但从时间复杂度来说,需要O(n),有没有办法更优化呢。参考如下:

#include <stdio.h>
int main()
{
	int a,b,c,d,n;
    scanf("%d",&n);
	scanf("%d%d%d%d",&a,&b,&c,&d);
	int count= 0;
	count = n/a+n/b+n/c+n/d-n/(a*b)-n/(a*c)-n/(a*d)-n/(b*c)-n/(b*d)-n/(c*d) + n/(a*b*c) + n/(a*b*d) + n/(a*c*d)+n/(b*c*d)-n/(a*b*c*d);
	printf("%d\n",count);
	return 0;
}

能够被素数整除的数的数量,就是n除以素数的商。但存在重复统计的情况,比如a=2,b=3,那么6就会统计了两次。因此需要减去n/(a*b)的商。但对于a=2,b=3,c=5,来说,30这个数被统计了3次,减去n/(a*b)这种做法,又会被减去3次,因此还要加上n/(a*b*c)的数量。以此类推,最后还需要减去n/(a*b*c*d)的数量

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值