当机器有了“视力”,它会抢人类的饭碗并取代人类吗?

与推动更多人工智能(AI)进入我们生活的总动力相伴,是使计算机能够“了解”周围世界正在发生的事情的动力。重要的是要意识到,在可预见的将来,围绕“看见”一词的讨论将一直存在。我们可以为计算机提供足够的智能,以开始对周围世界中扫描的对象进行分类,但是在我们开始开发人机/机器人之前,技术“查看”的能力永远不会成为计算机核心处理器的本身。

计算机科学家兼斯坦福大学视觉实验室负责人李飞飞(Fei-Fei Li)表示:“就像听不等于听见,看不等于看见。”在人类视力和不断发展的计算机视觉领域之间的关系。

通常在此技术专区中引用的示例通常包括可以识别狗的计算机视觉扫描仪。这些机器很聪明,它们通常无法向前发展,并且能够区分狗和狐狸,土狼,澳大利亚野狗。为什么?由于计算机视觉的大脑还没有接触到足够多的数据集,因此知道狗不是唯一的有四只腿,一条尾巴和一对松软(或尖头)的耳朵的蓬松动物。

计算机视觉简史

机器视觉系统的最早形式可以追溯到1960年代。当时建立了计算机视觉算法以执行现在被认为是数字图像处理的基本形式的东西。在1970年代,我们引入了智能来推理并基于阴影,运动和上下文等元素来推断与图像可能表示的内容有关的“推论”。

上世纪末,我们转向3D建模,但实际上是在千年后的几年中,我们看到了基于云计算框架和大规模连接系统提供的巨大神经网络计算能力的图像处理技术的巨大进步。

今天,我们在计算机视觉方面的工作不仅集中于实时对象识别和分类,而且还涉及与场景分类和理解,人体运动识别和材料识别相关的更复杂的任务。

那么,基于人工智能的计算机视觉将走向何方,关键的影响因素是什么,它将如何改变我们的生活?

接下来的计算机视觉功能

IBM以其在这一领域的工作而闻名。该公司已经在温布尔登全英网球锦标赛上提供球运动跟踪技术已有29年了。该项目最初只是致力于帮助裁判员打进或打出球的项目,后来逐渐发展为研究场上球的放置(跟踪被动比赛与激进比赛)以及与事件本身相关的各种社交渠道数据。

IBM iX创意解决方案部门的全球负责人马特·坎迪(Matt Candy)表示,将人类经验作为一切工作的核心已经不是什么秘密了。 Candy说,组织现在必须设计个性化和响应式的体验,因此,使用计算机视觉和AI来查看人类的行为方式是旨在满足客户和员工甚至没有意识到的需求的新业务战略的一部分。

“提供这种以人为本的体验,需要通过分析,评估,解释和理解大量数据来发现深刻的见解。深度学习和计算机视觉中的通用AI技术使得用肉眼不可能做到的事情成为可能。在航空业中,延误会影响人员体验和利润,许多公司都在为其维修人员配备AI增强型Apple iOS移动应用程序。这些应用程序可以帮助机械师识别发动机上正确的零件,而无需参考冗长的手册。通过简单地将手机对准引擎,AI可以分析手机的图像,并向技术人员显示有价值的信息以及该引擎的零件号。” IBM的Candy说。

从本质上讲,我们必须意识到,由于更智能,更复杂的算法,更快的计算机,更大的网络以及对更广泛的数据集的访问,计算机视觉正变得越来越智能。 Software AG AI战略与创新总监Mark Rabkin提醒我们,用于计算机视觉的深度学习模型由层组成,这些层将提取图像的不同特征,例如边缘,形状,高度,宽度和深度,颜色和其他图像组件。

“这些层的图将是多个层次的,这就是深度学习的名称。在计算过程结束时,深度学习模型将重新组合所有提取的特征,并将其与经过训练的特征进行比较,并提供数值结果,然后可以将其转换为定性得分或得分。因此,在使用模型查看可能患有青光眼的患者的医学图像的情况下,分数将包括哪种类型的青光眼,严重程度和诊断的置信度,” Software AG的Rabkin说。

注意计算机视觉中一些最令人兴奋的工作是评估医学图像。 Rabkin说,通过使用AI系统评估医学图像,这些系统使医生有更多的时间。他指出了所谓的“环内人种”系统(HITL),其中AI系统进行诊断并由医生对其进行验证。

计算机会替代人类?

计算机视觉和AI旨在帮助人类,而不是取代人类-正如上面的“环环相扣”系统的出现所建议的那样。

请记住,人类是优秀的生物,但是(与计算机相比)我们是相当贫穷的专家。 我们需要人的大脑(和眼睛)以广角视角观察周围的世界,然后我们才能使用计算机的大脑,眼睛和耳朵来专注于特定任务和问题的细节。

如果你的工作实质上取决于你查看和解释周围世界中所创建的信息信号的能力,那么(在大多数情况下)你不一定会变得多余。 有很多值得一看的地方……现在,我们有了一些非常聪明的额外帮助——机器。

支持计算机视觉与语音识别

Gravitylink推出钛灵AIX是一款集计算机视觉与智能语音交互两大核心功能为一体的人工智能硬件,Model Play是面向全球开发者的AI模型资源平台,内置多样化AI模型,与钛灵AIX结合,基于Google开源神经网络架构及算法,构建自主迁移学习功能,无需写代码,通过选择图片、定义模型和类别名称即可完成AI模型训练。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值