MSI-Net参考论文:Contextual Encoder-Decoder Network for Visual Saliency Prediction(A Kroner,2019)

受分割网络的启发,利用Encoder-Decoder结构,全局上下文信息,是一种轻量级(Light-weight)的网络,用了多尺度特性,基于VGG16骨干网络来实现。在上采样时,使用bilinear缩放+3×3Conv代替简单的bilinear内插或deconv,deconv会产生棋盘(checkerboard)效应。用KLD作为损失函数,KLD越小越好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值