开源公告| 腾讯分布式数据科学组件

Fast-Causal-Inference是微信实验科学团队开发的分布式统计分析库,提供秒级执行的因果推断能力,通过SQL简化模型使用。它支持基础和进阶因果推断工具,如ttest、OLS和IV等,并已在微信多个业务中应用,开源地址:https://github.com/Tencent/fast-causal-inference。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

725758d37b65e22ec18f7a2428d11e12.gif

Fast-Causal-Inference是腾讯微信实验科学团队研发,采用SQL交互的,基于分布式向量化的统计分析、因果推断计算库。解决已有统计模型库(R/Python)在大数据下的性能瓶颈, 提供百亿级数据秒级执行的Causal inference能力。同时通过SQL语言降低统计模型使用门槛,易用于生产环境中。

项目主要优势

1、提供海量数据秒级执行的Causal inference能力  

基于向量化OLAP执行引擎ClickHouse/StarRocks,速度上更益于极致化用户体验

b0240291413e978e33859b64f2e7736e.png

2、极简的SQL使用方式

SQLGateway WebServer通过SQL语言降低统计模型使用门槛,并在上层提供极简的SQL使用方式,透明做引擎相关的SQL展开和优化

c84ceeb04edc1c8b210907133a6c28f7.png

3、提供基础算子、高阶算子的因果推断能力, 及上层的应用封装

支持 ttest, OLS, Lasso, Tree-based model, matching, bootstrap, DML等 

063c92c23f323fce88a384efbe580792.png

首个版本已经支持如下feature

基础因果推断工具

1、基于deltamethod的ttest,支持CUPED

2、OLS,亿行数据,亚秒级

进阶因果推断工具

1、以OLS为基础的 IV,WLS,以及其他GLS,DID,合成控制,CUPED,mediation正在孵化

2、uplift:千万数据分钟级别运算

3、bootstrap/permutation等数据模拟框架,解决没有显示解的方差估计问题

项目应用

已经支持了微信视频号、微信搜一搜等微信内部多个业务

项目开源地址

github:https://github.com/Tencent/fast-causal-inference

f0b2048ef0b68caabf7060eb22d68467.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值