weka知识流中的评估器和可视化器

评估器Evaluation

TrainingSetMaker:将数据集转换为训练集

TestSetMaker:将数据集转换为测试集

CrossValidationFlodMaker:将任意数据集、训练集或测试集分割为若干折

TrainTestSplitMaker:将任意数据集、训练集或测试集分割为训练集或测试集

ClassAssigner:对于任意的数据集、训练集或测试集,指定一列作为类别属性(分类属性)

ClassValuePicker:选择一个视为“正例”类别标签值。生成ROC风格的曲线数据时,需要使用该组件

ClassifierPerformanceEvaluator:评估分类器批量训练及测试的性能

IncrementalClassifierEvaluator:评估分类器的增量训练的性能

ClustererPerformanceEvaluator:评估聚类器的批量训练及测试的性能

PredictionAppender:追加预测测试集的分类器,对于离散分类的问题,可以追加预测类别标签或概率分布

SerializedModelSaver:将分类器保存为文件,以便将来使用。

可视化器Visualization

DataVisualizer:该组件能弹出一个面板,以单个较大的2D散点图形式可视化数据

ScatterPlotMatrix:该组件能弹出一个面板,其中包括一个由小的散点图组成的矩阵,单击其中的小散点图会弹出一个比较大的散点图

AttributeSummarizer:该组件能弹出一个面板,其中包括直方图的矩阵,每个直方图对应输入数据中的一个属性

ModelPerformanceChart:该组件能弹出一个面板,能可视化阈值(即ROC风格)的曲线

TextViewer:显示文本数据的组件,可显示数据集、分类性能统计等

GraphViewer:该组件能弹出一个面板,可视化基于树的模型

StripChart:该组件能弹出一个面板,显示滚动的数据散点图,用于查看在线的增量分类器的性能

CostBenefitAnalysis:交互式和图形化组件,探索变更成本/收益以及调整预测阈值所带来的影响

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值