评估器Evaluation
TrainingSetMaker:将数据集转换为训练集
TestSetMaker:将数据集转换为测试集
CrossValidationFlodMaker:将任意数据集、训练集或测试集分割为若干折
TrainTestSplitMaker:将任意数据集、训练集或测试集分割为训练集或测试集
ClassAssigner:对于任意的数据集、训练集或测试集,指定一列作为类别属性(分类属性)
ClassValuePicker:选择一个视为“正例”类别标签值。生成ROC风格的曲线数据时,需要使用该组件
ClassifierPerformanceEvaluator:评估分类器批量训练及测试的性能
IncrementalClassifierEvaluator:评估分类器的增量训练的性能
ClustererPerformanceEvaluator:评估聚类器的批量训练及测试的性能
PredictionAppender:追加预测测试集的分类器,对于离散分类的问题,可以追加预测类别标签或概率分布
SerializedModelSaver:将分类器保存为文件,以便将来使用。
可视化器Visualization
DataVisualizer:该组件能弹出一个面板,以单个较大的2D散点图形式可视化数据
ScatterPlotMatrix:该组件能弹出一个面板,其中包括一个由小的散点图组成的矩阵,单击其中的小散点图会弹出一个比较大的散点图
AttributeSummarizer:该组件能弹出一个面板,其中包括直方图的矩阵,每个直方图对应输入数据中的一个属性
ModelPerformanceChart:该组件能弹出一个面板,能可视化阈值(即ROC风格)的曲线
TextViewer:显示文本数据的组件,可显示数据集、分类性能统计等
GraphViewer:该组件能弹出一个面板,可视化基于树的模型
StripChart:该组件能弹出一个面板,显示滚动的数据散点图,用于查看在线的增量分类器的性能
CostBenefitAnalysis:交互式和图形化组件,探索变更成本/收益以及调整预测阈值所带来的影响