53 最大子序列 动态规划

使用动态规划解决最大子序列和问题,初始化最大子序列和为数组第一个元素,通过遍历数组,根据当前子序列和与0的关系更新最大子序列和。最终得到最大子序列和。

动态规划
定义当前最大连续子序列和cur_sum=0cur_sum=0,最大子序和res=nums[0]res=nums[0],数组长度nn
对数组进行遍历,对于nums[i]nums[i],存在两种情况:
若当前最大连续子序列和cur_sum>0cur_sum>0,说明cur_sumcur_sum对后续结果有着正向增益,即能使后续结果继续增大,则继续加和cur_sum=cur_sum+num[i]cur_sum=cur_sum+num[i]。
若当前最大连续子序列和cur_sum<=0cur_sum<=0,说明cur_sumcur_sum对后续结果没有增益或负向增益,即若存在更大的加和,一定是从下一元素开始,加上cur_sumcur_sum,只会使结果更小。因此,令cur_sumcur_sum更新为nums[i]nums[i]。
更新最大子序和resres,res=max(res,cur_sum)res=max(res,cur_sum),始终保留最大结果。

作者:zhu_shi_fu
链接:https://leetcode-cn.com/problems/maximum-subarray/solution/dong-tai-gui-hua-zhu-xing-jie-shi-python3-by-zhu_s/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        cur_sum = 0
        res = nums[0]
        n = len(nums)
        for i in range(n):
            if (cur_sum>0):
                cur_sum+=nums[i]
            else:
                cur_sum = nums[i]
            res = max(res,cur_sum)
        return res
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值