当一回诗人,基于TF写古诗

通过TensorFlow构建两层RNN模型,使用4万多首唐诗作为训练数据,实现了能创作古诗的人工智能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

在腾讯的开发者实验室学习以后,记录一下使用步骤,采用TensoFlow的算法 构建两层的 RNN,采用 4 万多首唐诗作为训练数据,实现可以写古诗的 AI ,为你自己写一首古诗吧。

步骤

  1. prepare_data.py - 古诗清洗、过滤较长或较短古诗、过滤即非五言也非七言古诗、为每个字生成唯一的数字ID、每首古诗用数字ID表示;
  2. prepare_model.py - 两层RNN网络模型,采用LSTM模型;
  3. train.py - 训练LSTM模型;
  4. predict.py - 生成古诗,随机取一个汉字,根据该汉字生成一首古诗。

清洗数据

古诗清洗、过滤较长或较短古诗、过滤即非五言也非七言古诗、为每个字生成唯一的数字ID、每首古诗用数字ID表示
数据来源:wget http://tensorflow-1253902462.cosgz.myqcloud.com/rnn_poetry/poetry

#-*- coding:utf-8 -*-
import numpy as np
from io import open
import sys
import collections
reload(sys)
sys.setdefaultencoding('utf8')

class Poetry:
    def __init__(self):
        self.filename = "poetry.txt"
        self.poetrys = self.get_poetrys()
        self.poetry_vectors,self.word_to_id,self.id_to_word = self.gen_poetry_vectors()
        self.poetry_vectors_size = len(self.poetry_vectors)
        self._index_in_epoch = 0

    def get_poetrys(self):
        poetrys = list()
        f = open(self.filename,"r", encoding='utf-8')
        for line in f.readlines():
            _,content = line.strip('\n').strip().split(':')
            content = content.replace(' ','')
            #过滤含有特殊符号的唐诗
            if(not content or '_' in content or '(' in content or '(' in content or "□" in content
                   or '《' in content or '[' in content or ':' in content or ':'in content):
                continue
            #过滤较长或较短的唐诗
            if len(content) < 5 or len(content) > 79:
                continue
            content_list = content.replace(',', '|').replace('。', '|').split('|')
            flag = True
            #过滤即非五言也非七验的唐诗
            for sentence in content_list:
                slen = len(sentence)
                if 0 == slen:
                    continue
                if 5 != slen and 7 != slen:
                    flag = False
                    break
            if flag:
                #每首古诗以'['开头、']'结尾
                poetrys.append('[' + content + ']')
        return poetrys

    def gen_poetry_vectors(self):
        words = sorted(set(''.join(self.poetrys) + ' '))
        #数字ID到每个字的映射
        id_to_word = {i: word for i, word in enumerate(words)}
        #每个字到数字ID的映射
        word_to_id = {v: k for k, v in id_to_word.items()}
        to_id = lambda word: word_to_id.get(word)
        #唐诗向量化
        poetry_vectors = [list(map(to_id, poetry)) for poetry in self.poetrys]
        return poetry_vectors,word_to_id,id_to_word

    def next_batch(self,batch_size):
        assert batch_size < self.poetry_vectors_size
        start = self._index_in_epoch
        self._index_in_epoch += batch_size
        #取完一轮数据,打乱唐诗集合,重新取数据
        if self._index_in_epoch > self.poetry_vectors_size:
            np.random.shuffle(self.poetry_vectors)
            start = 0
            self._index_in_epoch = batch_size
        end = self._index_in_epoch
        batches = self.poetry_vectors[start:end]
        x_batch = np.full((batch_size, max(map(len, batches))), self.word_to_id[' '], np.int32)
        for row in range(batch_size):
            x_batch[row,:len(batches[row])] = batches[row]
        y_batch = np.copy(x_batch)
        y_batch[:,:-1] = x_batch[:,1:]
        y_batch[:,-1] = x_batch[:, 0]

        return x_batch,y_batch

准备模型

两层RNN网络模型,采用LSTM模型,其实我不太懂这里面的ALTM算法(没有太大影响,腾讯大大已经注释很详细了)

#-*- coding:utf-8 -*-
import tensorflow as tf
import tensorflow.contrib.rnn as rnn

class poetryModel:
    #定义权重和偏置项
    def rnn_variable(self,rnn_size,words_size):
        with tf.variable_scope('variable'):
            w = tf.get_variable("w", [rnn_size, words_size])
            b = tf.get_variable("b", [words_size])
        return w,b

    #损失函数
    def loss_model(self,words_size,targets,logits):
        targets = tf.reshape(targets,[-1])
        loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example([logits], [targets], [tf.ones_like(targets, dtype=tf.float32)],words_size)
        loss = tf.reduce_mean(loss)
        return loss

    #优化算子
    def optimizer_model(self,loss,learning_rate):
        tvars = tf.trainable_variables()
        grads, _ = tf.clip_by_global_norm(tf.gradients(loss, tvars), 5)
        train_op = tf.train.AdamOptimizer(learning_rate)
        optimizer = train_op.apply_gradients(zip(grads, tvars))
        return optimizer

    #每个字向量化
    def embedding_variable(self,inputs,rnn_size,words_size):
        with tf.variable_scope('embedding'):
            with tf.device("/cpu:0"):
                embedding = tf.get_variable('embedding', [words_size, rnn_size])
                input_data = tf.nn.embedding_lookup(embedding,inputs)
        return input_data

    #构建LSTM模型
    def create_model(self,inputs,batch_size,rnn_size,words_size,num_layers,is_training,keep_prob):
        lstm = rnn.BasicLSTMCell(num_units=rnn_size,state_is_tuple=True)
        input_data = self.embedding_variable(inputs,rnn_size,words_size)
        if is_training:
            lstm = rnn.DropoutWrapper(lstm, output_keep_prob=keep_prob)
            input_data = tf.nn.dropout(input_data,keep_prob)
        cell = rnn.MultiRNNCell([lstm] * num_layers,state_is_tuple=True)
        initial_state = cell.zero_state(batch_size, tf.float32)
        outputs,last_state = tf.nn.dynamic_rnn(cell,input_data,initial_state=initial_state)
        outputs = tf.reshape(outputs,[-1, rnn_size])
        w,b = self.rnn_variable(rnn_size,words_size)
        logits = tf.matmul(outputs,w) + b
        probs = tf.nn.softmax(logits)
        return logits,probs,initial_state,last_state

定义好模型和数据后,下面开始训练

训练

#-*- coding:utf-8 -*-
from prepare_data import Poetry
from prepare_model import poetryModel
import tensorflow as tf
import numpy as np

if __name__ == '__main__':
    batch_size = 50
    epoch = 20
    rnn_size = 128
    num_layers = 2
    poetrys = Poetry()
    words_size = len(poetrys.word_to_id)
    inputs = tf.placeholder(tf.int32, [batch_size, None])
    targets = tf.placeholder(tf.int32, [batch_size, None])
    keep_prob = tf.placeholder(tf.float32, name='keep_prob')
    model = poetryModel()
    logits,probs,initial_state,last_state = model.create_model(inputs,batch_size,
                                                               rnn_size,words_size,num_layers,True,keep_prob)
    loss = model.loss_model(words_size,targets,logits)
    learning_rate = tf.Variable(0.0, trainable=False)
    optimizer = model.optimizer_model(loss,learning_rate)
    saver = tf.train.Saver()
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        sess.run(tf.assign(learning_rate, 0.002 * 0.97 ))
        next_state = sess.run(initial_state)
        step = 0
        while True:
            x_batch,y_batch = poetrys.next_batch(batch_size)
            feed = {inputs:x_batch,targets:y_batch,initial_state:next_state,keep_prob:0.5}
            train_loss, _ ,next_state = sess.run([loss,optimizer,last_state], feed_dict=feed)
            print("step:%d loss:%f" % (step,train_loss))
            if step > 40000:
                break
            if step%1000 == 0:
                n = step/1000
                sess.run(tf.assign(learning_rate, 0.002 * (0.97 ** n)))
            step += 1
        saver.save(sess,"poetry_model.ckpt")

说明一下,每批次采用 50 首唐诗训练,训练 40000 次后,损失函数基本保持不变,GPU 大概需要 2 个小时左右。当然你可以调整循环次数,节省训练时间,亦或者直接下载我们训练好的模型。———-来自腾讯大大

题外话

快速通道:

wget http://tensorflow-1253902462.cosgz.myqcloud.com/rnn_poetry/poetry_model.zip
unzip poetry_model.zip

这是训练好的数据,腾讯大大想的真周到!

预测

激动的时刻来了,看代码:

#-*- coding:utf-8 -*-
from generate_poetry import Poetry
from poetry_model import poetryModel
from operator import itemgetter
import tensorflow as tf
import numpy as np
import random


if __name__ == '__main__':
    batch_size = 1
    rnn_size = 128
    num_layers = 2
    poetrys = Poetry()
    words_size = len(poetrys.word_to_id)

    def to_word(prob):
        prob = prob[0]
        indexs, _ = zip(*sorted(enumerate(prob), key=itemgetter(1)))
        rand_num = int(np.random.rand(1)*10);
        index_sum = len(indexs)
        max_rate = prob[indexs[(index_sum-1)]]
        if max_rate > 0.9 :
            sample = indexs[(index_sum-1)]
        else:
            sample = indexs[(index_sum-1-rand_num)]
        return poetrys.id_to_word[sample]

    inputs = tf.placeholder(tf.int32, [batch_size, None])
    keep_prob = tf.placeholder(tf.float32, name='keep_prob')
    model = poetryModel()
    logits,probs,initial_state,last_state = model.create_model(inputs,batch_size,
                                                               rnn_size,words_size,num_layers,False,keep_prob)
    saver = tf.train.Saver()
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        saver.restore(sess,"poetry_model.ckpt")
        next_state = sess.run(initial_state)

        x = np.zeros((1, 1))
        x[0,0] = poetrys.word_to_id['[']
        feed = {inputs: x, initial_state: next_state, keep_prob: 1}
        predict, next_state = sess.run([probs, last_state], feed_dict=feed)
        word = to_word(predict)
        poem = ''
        while word != ']':
            poem += word
            x = np.zeros((1, 1))
            x[0, 0] = poetrys.word_to_id[word]
            feed = {inputs: x, initial_state: next_state, keep_prob: 1}
            predict, next_state = sess.run([probs, last_state], feed_dict=feed)
            word = to_word(predict)
        print poem

输出:

天下云中下,云台日日深。不言三尺水,何许五侯游。山外寒花动,春寒水色开。无言知此路,谁见旧山风。

这里写图片描述

所有代码托管于:https://github.com/tengxing/tensorflow-learn 欢迎start!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值