Sixth week of machine learning on Coursera

Sixth week of machine learning on Coursera

@(Coursera)


模型选择最佳方法是将数据集分为训练集、交叉验证集和测试集,比例为 6:2:2
模型选择问题如下图:
这里写图片描述
举线性模型例子来说,提供了10个线性模型,最高项从 x1,...,x10 ,那么该如何选择误差最小的模型呢?
我们使用交叉验证集来验证各个模型的误差,取损失函数最小的模型,比如是第四个模型,也就是 hθ(x)=θ0+θ1x1+...+θ4x4 ,然后再在测试集看 hθ(x) 的泛化误差。


偏差和方差(Bias and Variance)
  • 高偏差: Jtrain(θ)Jcv(θ)
  • 高方差: Jtrain(θ)Jcv(θ)
    这里写图片描述
    这里写图片描述

一般我们会画出学习曲线(learning curves)来查看此时算法处在high bias or high variance:
high bias:
如下图,
- 当训练集size比较小时, Jtrain(Θ) is low and JCV(Θ) is high;
- 当训练集size比较大时, Jtrain(Θ) and JCV(Θ) to be high,Jtrain(Θ)JCV(Θ);

训练集size对high bias减小cost没什么帮助。
这里写图片描述


high variance:
如下图,
- 当训练集size比较小时, Jtrain(Θ) is low and JCV(Θ) is high;
- 当训练集size比较大时, Jtrain(Θ) 在不断上升,因为 highvariance 实际对应过拟合情况,当训练集样本增多,想要假设函数满足所有训练样本就很困难,所有 Jtrain(Θ) 就会慢慢增大,而 JCV(Θ) 在慢慢减小。

训练集size对high variance减小cost有较大帮助。
这里写图片描述


建造一个垃圾邮件分类器

我们使用 x 表示邮件的特征,使用y=1y=0
这里写图片描述

xj=[1,word j appears in email0, oterwise]


推荐的开始方式是:
- 从一个可以快速实现的简单算法开始,实现它并且在交叉验证集上测试;(我觉得这个思想很重要,在看《Algorithms》那本算法书的时候,同样指导在遇到一个问题时首先可以使用暴力法将问题解决,再从暴力法中查找是否有些地方可以优化,而不用一开始就想着设计一个非常复杂的方法。)
- 画出学习曲线(learning curves)来决定是否需要更多的数据、更多的特征等等。
- 误差分析:手动查找错误分类的样本,看一下它们本来属于什么类型?你认为什么特征可以帮助来正确分类它们?可以发现一些系统性的规律某类样本一直被错误分类。
这里写图片描述


评价分类器性能的指标一般是分类准确率:对于给定的测试数据集,分类器正确分类的样本数与总样本数之比。
还有一些常用的评价指标比如Precision精确率、Recall召回率
其中:
- TP—将正类预测为正类;
- FN—将正类预测为负类;
- FP—将负类预测为正类;
- TN—将负类预测为负类;

Percision=TPTP+FP

Recall=TPTP+FN

此外还有 F1 值,是 PrecisionRecall 的调和均值,
2F1=1F+1R

F1=2TP2TP+FP+FN

为什么我们除了准确率以外还需要上述其他评价指标呢?
看个例子,比如对癌症病人的预测,其实是个0-1分类问题,我能做到分类的准确率为97%,但其实癌症的概率为2%,也就是说如果我对所有的样本都分类为没有得癌症,那么我的准确率是不是有98%了,这比我用分类算法来分类的效果还要好,所以单纯用一种评价标准是不够的。
如上所述,( 习惯性用y=1表示出现很少的类别),在这里将得癌症的y值为1,也就是正类,那么 TP=0,TN=98,FP=0,FN=2
Percision=02+0=00,Recall=00+2=0

可以发现 Recall=0 表示模型始终预测 y=0 ,不是一个好模型。
和准确率accuracy一样,我们希望Percision 和Recall越高越好,越高表示模型越好。


平衡precision和Recall

还是以癌症的例子举例,我们使用 logistic regression 来给新样本做分类,
- hθ(x)0.5,y=1;
- hθ(x)0.5,y=0;

如果我们想能非常自信的预测一个新样本确实是患有癌症(y=1),可以将阈值0.5增大,那此时被分为y=1的样本,本身更大概率就是患有癌症的。也就是 FP 会减小, FN 会增大,所以

Percision=TPTP+FP
Recall=TPTP+FN


另一种情况,癌症是中非常严重的病,不能错漏一个可能有病的人,此时可以将阈值0.5调低一些,对应的 percisionRecall
这里写图片描述
那么如何在 PercisionRecall
可以使用我们上文使用的 F1 值,取 F1 值大的那组 PercisionRecall


数据中心机房是现代信息技术的核心设施,它承载着企业的重要数据和服务,因此,其基础设计与规划至关重要。在制定这样的方案时,需要考虑的因素繁多,包括但不限于以下几点: 1. **容量规划**:必须根据业务需求预测未来几年的数据处理和存储需求,合理规划机房的规模和设备容量。这涉及到服务器的数量、存储设备的容量以及网络带宽的需求等。 2. **电力供应**:数据中心是能源消耗大户,因此电力供应设计是关键。要考虑不间断电源(UPS)、备用发电机的容量,以及高效节能的电力分配系统,确保电力的稳定供应并降低能耗。 3. **冷却系统**:由于设备密集运行,散热问题不容忽视。合理的空调布局和冷却系统设计可以有效控制机房温度,避免设备过热引发故障。 4. **物理安全**:包括防火、防盗、防震、防潮等措施。需要设计防火分区、安装烟雾探测和自动灭火系统,设置访问控制系统,确保只有授权人员能进入。 5. **网络架构**:规划高速、稳定、冗余的网络架构,考虑使用光纤、以太网等技术,构建层次化网络,保证数据传输的高效性和安全性。 6. **运维管理**:设计易于管理和维护的IT基础设施,例如模块化设计便于扩展,集中监控系统可以实时查看设备状态,及时发现并解决问题。 7. **绿色数据中心**:随着环保意识的提升,绿色数据中心成为趋势。采用节能设备,利用自然冷源,以及优化能源管理策略,实现低能耗和低碳排放。 8. **灾难恢复**:考虑备份和恢复策略,建立异地灾备中心,确保在主数据中心发生故障时,业务能够快速恢复。 9. **法规遵从**:需遵循国家和地区的相关法律法规,如信息安全、数据保护和环境保护等,确保数据中心的合法运营。 10. **扩展性**:设计时应考虑到未来的业务发展和技术进步,保证机房有充足的扩展空间和升级能力。 技术创新在数据中心机房基础设计及规划方案中扮演了重要角色。例如,采用虚拟化技术可以提高硬件资源利用率,软件定义网络(SDN)提供更灵活的网络管理,人工智能和机器学习则有助于优化能源管理和故障预测。 总结来说,一个完整且高效的数据中心机房设计及规划方案,不仅需要满足当前的技术需求和业务目标,还需要具备前瞻性和可持续性,以适应快速变化的IT环境和未来可能的技术革新。同时,也要注重经济效益,平衡投资成本与长期运营成本,实现数据中心的高效、安全和绿色运行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值