LLC学习笔记4

这篇博客介绍了稀疏编码在图像处理中的进展,从VQ、SPM到LLC的演进。作者强调了在编码阶段改进的重要性,如SPM采用平均池化,ScSPM采用最大池化,而LLC引入局部约束以增强代码的相关性和稀疏性。LLC提供更好的重构质量和局部平滑稀疏性,同时拥有解析解,提高了编码效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

几篇参考文献存在着一个改进的顺序,BOF -> SPM -> ScSPm ->LLC
其中BOF->SPM是在Pooling阶段进行改进,SPM -> ScSPm ->LLC则是在coding阶段进行改进。。

令X是一幅图像中提取得到的D维local descriptors, 给定一个由M个条目的codebook B=[b1,b2,…,bM]∈ℝ^(D X M),使用不同的编码方案将each descriptor 转换为一个M维的code来generate the final image representation。

不同的编码方案示意如下:
不同的编码方案

1.Coding descriptors in VQ(SPM)

Coding descriptors in VQ
求解式中的ci,使得其误差最小,ci是一个只有一个非0元素的m x 1的向量。。。然后用ci pooling当前金字塔层级的图像块的BOF特征。。

2.Coding descriptors in ScSPM

Coding descriptors in ScSPM
“Sparse coding is a better building block“。
Coding过后,ScSPM采用的Pooling方法是max pooling:ci=max(C)。相比SPM的average pooling:ci =1/ Σ ci。可以看见average pooling是一

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值