几篇参考文献存在着一个改进的顺序,BOF -> SPM -> ScSPm ->LLC
其中BOF->SPM是在Pooling阶段进行改进,SPM -> ScSPm ->LLC则是在coding阶段进行改进。。
令X是一幅图像中提取得到的D维local descriptors, 给定一个由M个条目的codebook B=[b1,b2,…,bM]∈ℝ^(D X M),使用不同的编码方案将each descriptor 转换为一个M维的code来generate the final image representation。
不同的编码方案示意如下:
1.Coding descriptors in VQ(SPM)
求解式中的ci,使得其误差最小,ci是一个只有一个非0元素的m x 1的向量。。。然后用ci pooling当前金字塔层级的图像块的BOF特征。。
2.Coding descriptors in ScSPM
“Sparse coding is a better building block“。
Coding过后,ScSPM采用的Pooling方法是max pooling:ci=max(C)。相比SPM的average pooling:ci =1/ Σ ci。可以看见average pooling是一