到底什么是 Growth Hacking?

Growth-HackingGrowth hacking 在硅谷的确是有快被用坏的趋势,之所以在大陆的互联网创业圈里还没有普及开来,我想一个是由于这个词并没有对应的中文解释,没有一个能够找到一个相对完美的解释,就像 “hack” 这个词一样。二来可能是由于大陆的大多数创业公司依然没有将纯粹的获取用户与传统的营销分离开来,没有去总结用户增长背后的驱动力到底是什么,又或者有这样的人士,但是却缺少硅谷开放分享的精神。

这个词之所以被国外创业公司竞相讨论,并不是因为它只是个媒体创造出来的浮夸辞藻,而是因为 growth hacking 在 Facebook、Twitter、Quora、LinkedIn 等等成功的初创企业背后扮演着举足轻重的角色,这些公司也的确专门为这个角色成立了独立的部门,全权负责用户的增长。

Andrew Chen 曾在他那篇有名的《Growth Hacker is the new VP Marketing》中将 growth hacker 描绘成程序猿和 marketing 的混血儿,利用各种技术上的最佳实践来驱动用户的增长。One Month Rails 的创始人 Mattan Griffel 在 Quora 上也回答过类似的问题(他创立了全世界第一家 growth hacking 顾问公司 GrowHack) ,他认为与传统的 marketing 最大不同的地方在于,growth hacking 则是从产品层面开始考虑用户增长。

Growth hacking 更像是专门为初创企业设立的 marketing 部门,与现在火爆的 lean startups 其实是相通的,growth hacking 更多涉及到的是产品的迭代,比如通过 landing page 来决定到底哪个页面的用户注册转化率更高,以此下一次产品迭代时更新。类似的例子很多,利用这些数据分析的工具,growth hacker 能很快从产品开发的层面找到最适合自己的用户增长最佳实践,并可能会在这个过程中完善产品本身。

而传统的 marketing 则基本不会涉及到产品技术层面,基本都是为一个成型的产品打造相关的推广策略,虽然都是为了获得更多的用户。这看上去其实比较像产品经理的任务,但就职责来细分的话,产品经理的重心主要还是在整个产品本身的开发,而 growth hacker 则是一个专门去思考如何技术性地获取用户的角色。

有个例子被无数次用来解释 growth hacking 和传统 marketing 的区别,那就是当年的 Hotmail。两个创始人为了自己的 parttime 项目不被老板发现,便自己打造了一个基于浏览器的 email 服务,最后干脆把这个当做创业做了起来。他们当初是想要通过电视广告、露天广告牌等方式来推广产品,但最后一个投资人建议,在每个用户发送的每一封 email 下面都加一句话:“PS:I love you. Get your free email at Hotmail.”,就这样,零成本地让 Hotmail 病毒式地蔓延开来,一年半下来积累了1200万用户,而当时全世界使用互联网的人不过7000万。

这个例子其实不算非常特殊,是因为当时数据分析等工具还没有出现,看不出产品层面上的变化为增长用户带来的改变。但 Griffel 的观点其实是有道理的,公司内部很多非 marketing 的决定完全能够左右产品的用户增长率,growth hacking 更像是一个跨部门的角色,它可以细小到产品设计的每一个细节,比如购买按钮的哪种颜色更能提高用户的点击率,也可以大到说收购一家海外公司来扩张自己的业务和用户。

其实这也是为何有些人认为 growth hacker 这个词只是有些哗众取宠罢了,这个角色的职责其实在互联网发展开始就已经存在了,只不过没有将其细分出来,而是分散到其他部门去了,比如 marketing 和产品开发。

Growth hacking 现在算是有了自己的一套最佳实践方法,比如优化 landing page、A/B 测试、email 送达率、SEO、content management、大平台整合等等,以此完善 growth hacking 中总结出来的5个过程:Acquisition(用户获取)、Activation(激活注册)、Retention(保留活跃)、Referral(推荐分享)和 Revenue(变现模式)。

这些例子其实很多,如果一家初创企业有几个人每天都在专研这5个过程中用户在增长方面的潜力的话,类似用户注册转化率、回流率、购买率等非常重要的指数绝对会有大的变化,更何况这也完善了产品本身,我想这大概就是这些明星初创企业看中这个角色背后的原因吧,绝对是为了增加用户而增加用户。

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值