相对于传统商业,电商的初期,在各个环节的问题上面很难通过开会的方式找到问题点
但是,如果电商在各个环节加入了日志记录,然后批量作业得出数据,然后通过各个图,只管的表现出来数据,那么弱项成为强项。
对于整体,我们做的第一步就是记录数据,然后分析数据,预测数据。
记录数据和分析数据是整个环节的基础部分,有了这个方面的数据,增强数据的敏锐性,当然分析的过程中包括很多中间的数据库,有各个维度的数据,还有总的数据,
我们需要按照不同的维度对数据进行批量作业,然后得到的数据进行存储,然后,直观的显现。
1.记录数据:
系统信息:uuid , 追踪对应的系统账号,外部aid信息。cookie等其他的一些标示信息。内部广告位aid信息。
客户信息:ip,国家,当前时区时间,当前北京时间,电脑设备,浏览器信息(版本,语言,型号等),操作系统,屏幕宽度,pc或者手机设备,以及手机操作系统环境等,
页面信息:当前访问域名,url,页面标题,refer,
客户属性信息:是否是return客户
动态信息:页面的一些信息,譬如产品页面传递sku,购物车页面传递购物车信息,下单页面传递下单信息等。
2.初步有了这些信息后,需要进行汇总。也就是分析数据
2.1:按照uuid进行汇总:对每一个人的所有页面进行记录,所有的sku页面,加入购物车的产品,购买的产品,是否是老客户,浏览器信息,国家地域,是否是手机,等等
然后,在这个基础上过滤出来各个aid尾巴的客户,通过aid的标示,获取各个渠道进来的客户的信息,譬如邮件来源,fb,twitter等。然后通过aid进行汇总,得出各个广告对应的ip个数,访问量pv,加入购物车的产品总数,访问的产品总数,访问超过N个页面的比例,下单的金额,下单的个数等等。进而通过一些ROI的比率进行评判广告的优劣。
反转分析,拿出某一个广告,进行数据的详细调取。譬如一个aid有1000个客户访问,然后分析这个1000个客户进入这个页面有多少个走掉了,多少个点击了页面的那些部分,通过加载网站页面,然后画上点击数字以及点击率的方式展现,让营销人员更加直观的查看到具体数据的流向。
营销人员根据这个分析广告可能出现的问题
邮件部分:这个邮件针对的是客户,首先需要分析客户的行为,客户做了哪些事情,然后分析出来他可能喜欢的东西,然后做推荐,以及对应客户历史的邮件发送,来决定是否给这个客户发送邮件。也可以通过维度进行分析。找出来某一类的客户进行邮件的发送。 将客户是否发送邮件,发送的邮件的类型等弄好后,就可以发送邮件了。下一步进行邮件的分析:分析邮件的打开率,邮件内容的点击率,邮件进入网站页面的各个比率,最总的加入购物车的比率,订单的比例等等。
网站内部的广告位的分析,通过参数的加入进行追踪,各个广告位点击后产生的效益如何
某个页面的分析,譬如首页,各个部分点击的比率,最总的购买等等。
分析出来访问量量最高的页面,。下单最多的sku,最受欢迎的产品页面,。跳出率最高的页面。访问量和跳出率等等其他因素糅合到一起的一些比率等等。
建立用户档案:有点类似crm,我称之为:
URM:User Relationship Management
但是CRM对应的是客户关系管理,这个是用户关系管理,将用户的所有信息进行存储,譬如:
什么时候,通过哪里进入网站,访问的页面,下的订单,什么时候进行了发货,产生什么售后问题,客服进行的回复等等信息。进行详细的记录,为将来的大数据预测做数据准备。也为问题的出现寻找根源。
譬如有一个客户退单,那么可以查找这个客户历史退单情况,历史购买情况,根据客户的下单等情况进行客户的级别处理,不同的级别对应不同的客户服务标准,对高级客户提供一流的售后服务基准。
对客户的行为进行评分,维持好和客户的关系,然后让客户享受一些优惠,来圈住忠实客户。
然后查看高级客户喜欢的事情,反感的事情,譬如发送了一封邮件。大部分客户都是查看后没有点击,这说明这个类型的客户是反感的等等、。
上面都是一些基础性的分析,有了这个分析,建立数据的基石
3数据预测
这个应该是最优魅力的地方,目的不是流通,而是畅通,最优。
譬如发广告,预测对,某个类型的产品加入那样的广告会带来多少的ip,产生多少订单,造成多少退货率,返修率等等,
然后计算出来最优的方式,优化各个环节等等。
大数据+电商,真是如鱼得水,不过,对于做这个方面,得深入的挖掘事物的本质,通过哲学的角度底层分析,也就是找到一种所谓的道,道即:世间万物运转的规律。