深度学习
文章平均质量分 88
TerryWenD
这个作者很懒,什么都没留下…
展开
-
pytorch教程之nn.Module类详解——使用Module类来自定义网络层
转自:pytorch教程之nn.Module类详解——使用Module类来自定义网络层_MIss-Y的博客-CSDN博客前言:前面介绍了如何自定义一个模型——通过继承nn.Module类来实现,在__init__构造函数中申明各个层的定义,在forward中实现层之间的连接关系,实际上就是前向传播的过程。事实上,在pytorch里面自定义层也是通过继承自nn.Module类来实现的,我前面说过,pytorch里面一般是没有层的概念,层也是当成一个模型来处理的,这里和keras是不一样的。前面转载 2021-12-07 10:31:41 · 981 阅读 · 1 评论 -
firefly-RK3399(Ubuntu16.04)安装配置深度学习tensorflow、keras环境
环境依赖python3.5/python3.6 tensorflow 1.14.0 keras 2.3.1 opencv 3.4.9 1.烧录Ubuntu16.04固件烧录平台及所需工具 win10 DriverAssitant_v4.5 Android toolv2.65 FIREFLY-RK3399-UBUNTU16.04-GPT-20190403-1019.img(Ubuntu16.04镜像) 烧写步骤详见RK3399烧写参考链接烧写过原创 2020-07-02 15:01:10 · 1805 阅读 · 0 评论 -
《Learning Deep Features for Discriminative Localization》——CAM热力图翻译及划重点
摘要 在这项工作中, 我们重新审视了《 Network in network》中提出的全局平均 池化层(global average pooling),并阐明了它是如何通过图片标签就能让卷积神经网络具有卓越的定位能力。虽然这项技术以前被当做正则化训练的一种方法,但是我们发现它实际构建了一种通用的适用于各种任务的能定位的深度表示。尽管global average pooling很简单,我们仍然能够在2014年的ILSVRC物体定位比赛中得到37.1%的top-5错误率,与CNN的34.2%top-5错误率非常翻译 2020-06-30 11:21:54 · 847 阅读 · 0 评论 -
深度学习常见的提高性能的调参技巧
深度学习相关调参技巧相关Paper:http://arxiv.org/abs/1812.011871.启发式算法 线性学习率缩减(Linear scaling learning rate) 大的batchsize会减少梯度噪声训练过程中,学习率大小随着batch_size的增大而增大是可行的,如初始化lr=0.1Batch_size=256,则训练过程中batch_size大小增大为b,则lr=0.1*b/256...原创 2020-06-30 11:06:26 · 701 阅读 · 0 评论