#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cmath> // 计算距离时需要用到 sqrt 函数
using namespace std;
const int N = 200005;
const double INF = 1e15;
const double eps = 1e-6;
int n;
double mind;
struct point // 结构体存所有点
{
double x, y; // 存每个点的坐标
bool type; // 存每个点的类型
bool operator < (const point &t) const // 用于将所有点按 x 坐标从小到大排序
{
return x < t.x;
}
} points[N], tmp[N]; // points 存输入的每个点,tmp 存分治时对于每个点要处理的点
double get_dist(point a, point b) // 返回点 a 和点 b 的直径距离
{
if (a.type == b.type) return mind ; // 如果这两个点的类型不同,返回当前最优答案即可。
double dx = a.x - b.x, dy = a.y - b.y; // 计算出这两个点横纵坐标的差值
return sqrt(dx * dx + dy * dy); // 返回这两个点的平面距离
}
double dfs(int l, int r)
{
if (l == r) return INF ; // 如果剩下区域只有一个点,那么为了避免更新答案,返回正无穷
int mid = l + r >> 1; // 找到剩下区域内中间的点的位置。
double mid_x = points[mid].x; // 取出该点的 x 坐标,与该坐标距离超过 ans 的点不计入考虑。
double ans = min(dfs(l, mid), dfs(mid + 1, r)); // 分治计算出上述未被更新的 ans
// 先将 points 中的 [l, mid] 和 [mid + 1, r] 两段进行按 y 轴坐标进行按序归并
// 注意这里一定要归并,后面对于每个点我们才能快速找出对应的(至多) 6 个点,以保证总时间复杂度是 O(n log n)
int i = l, j = mid + 1, cnt = 0;
while (i <= mid && j <= r)
if (points[i].y < points[j].y) tmp[cnt ++ ] = points[i ++ ];
else tmp[cnt ++ ] = points[j ++ ];
while (i <= mid) tmp[cnt ++ ] = points[i ++ ];
while (j <= r) tmp[cnt ++ ] = points[j ++ ];
for (i = l; i <= r; i ++ ) points[i] = tmp[i - l];
// 找到所有在 [mid_x - ans, mid_x + ans] 中的点,存入 tmp
cnt = 0;
for (i = l; i <= r; i ++ )
if (points[i].x >= mid_x - ans && points[i].x <= mid_x + ans) // 如果说该点距离 mid_x 的距离小于 ans,那么需要考虑该点
tmp[cnt ++ ] = points[i];
// 下面第二层循环中,有 tmp[i].y - tmp[j].y <= ans 这个判断,才能保证我们对于每个点最多只考虑六个点
// 这样在每层递归中,就可以保证时间复杂度是线性的,否则时间复杂度是平方级别的
for (i = 0; i < cnt; i ++ ) // 处理所有 tmp 中的点
for (j = i - 1; ~j && tmp[i].y - tmp[j].y + eps <= ans; j -- )
ans = min(ans, get_dist(tmp[i], tmp[j])); // 更新 ans
mind = min(mind, ans);
return ans;
}
int main()
{
int T;
scanf("%d", &T);
while (T -- )
{
scanf("%d", &n);
for (int i = 0; i < n; i ++ )
{
scanf("%lf %lf", &points[i].x, &points[i].y); // 输入所有核电站的坐标
points[i].type = false; // 核电站的 type 制成 false
}
for (int i = n; i < n << 1; i ++ )
{
scanf("%lf %lf", &points[i].x, &points[i].y); // 读入所有特工的坐标
points[i].type = true; // 特工的 type 制成 true
}
mind = get_dist(points[0], points[(n << 1) - 1]);
sort(points, points + (n << 1)); // 将所有点按 x 坐标排序
printf("%.3lf\n", dfs(0, (n << 1) - 1)); // 分治函数的返回值即为答案
}
return 0;
}