输入中包含多组测试用例。第一行输入整数 T,代表测试用例的数量。对于每个测试用例,第一行输入整数 N。接下来 N 行,每行输入两个整数 X 和 Y,代表每个核电站的位置的 X,Y

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cmath> // 计算距离时需要用到 sqrt 函数

using namespace std;

const int N = 200005;
const double INF = 1e15;
const double eps = 1e-6;

int n;
double mind;
struct point // 结构体存所有点
{
    double x, y;                           // 存每个点的坐标
    bool type;                             // 存每个点的类型
    bool operator < (const point &t) const // 用于将所有点按 x 坐标从小到大排序
    {
        return x < t.x;
    }
} points[N], tmp[N];  // points 存输入的每个点,tmp 存分治时对于每个点要处理的点

double get_dist(point a, point b)            // 返回点 a 和点 b 的直径距离
{
    if (a.type == b.type) return mind ;      // 如果这两个点的类型不同,返回当前最优答案即可。
    double dx = a.x - b.x, dy = a.y - b.y;   // 计算出这两个点横纵坐标的差值
    return sqrt(dx * dx + dy * dy);          // 返回这两个点的平面距离
}

double dfs(int l, int r)
{
    if (l == r) return INF ;                 // 如果剩下区域只有一个点,那么为了避免更新答案,返回正无穷
    int mid = l + r >> 1;                    // 找到剩下区域内中间的点的位置。
    double mid_x = points[mid].x;            // 取出该点的 x 坐标,与该坐标距离超过 ans 的点不计入考虑。
    double ans = min(dfs(l, mid), dfs(mid + 1, r)); // 分治计算出上述未被更新的 ans

    // 先将 points 中的 [l, mid] 和 [mid + 1, r] 两段进行按 y 轴坐标进行按序归并
    // 注意这里一定要归并,后面对于每个点我们才能快速找出对应的(至多) 6 个点,以保证总时间复杂度是 O(n log n)
    int i = l, j = mid + 1, cnt = 0;
    while (i <= mid && j <= r)
        if (points[i].y < points[j].y) tmp[cnt ++ ] = points[i ++ ];
        else    tmp[cnt ++ ] = points[j ++ ];
    while (i <= mid) tmp[cnt ++ ] = points[i ++ ];
    while (j <= r) tmp[cnt ++ ] = points[j ++ ];
    for (i = l; i <= r; i ++ ) points[i] = tmp[i - l];

    // 找到所有在 [mid_x - ans, mid_x + ans] 中的点,存入 tmp
    cnt = 0;
    for (i = l; i <= r; i ++ )
        if (points[i].x >= mid_x - ans && points[i].x <= mid_x + ans) // 如果说该点距离 mid_x 的距离小于 ans,那么需要考虑该点
            tmp[cnt ++ ] = points[i];
    // 下面第二层循环中,有 tmp[i].y - tmp[j].y <= ans 这个判断,才能保证我们对于每个点最多只考虑六个点
    // 这样在每层递归中,就可以保证时间复杂度是线性的,否则时间复杂度是平方级别的
    for (i = 0; i < cnt; i ++ ) // 处理所有 tmp 中的点
        for (j = i - 1; ~j && tmp[i].y - tmp[j].y + eps <= ans; j -- )
            ans = min(ans, get_dist(tmp[i], tmp[j])); // 更新 ans
    mind = min(mind, ans);
    return ans;
}

int main()
{
    int T;
    scanf("%d", &T);
    while (T -- )
    {
        scanf("%d", &n);
        for (int i = 0; i < n; i ++ )
        {
            scanf("%lf %lf", &points[i].x, &points[i].y); // 输入所有核电站的坐标
            points[i].type = false;                       // 核电站的 type 制成 false
        }
        for (int i = n; i < n << 1; i ++ )
        {
            scanf("%lf %lf", &points[i].x, &points[i].y); // 读入所有特工的坐标
            points[i].type = true;                        // 特工的 type 制成 true
        }
        mind = get_dist(points[0], points[(n << 1) - 1]);
        sort(points, points + (n << 1));                  // 将所有点按 x 坐标排序
        printf("%.3lf\n", dfs(0, (n << 1) - 1));          // 分治函数的返回值即为答案
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值