exec dbms_stats.gather_table_stats(user, table_name, cascade=>true);
alter session set sql_trace = true;
delete操作会消耗大量的CPU资源和产生大量的I/O,同时还会产生大量的undo数据;
delete操作并不能释放出空间,也就是说,删除了哪个表的数据,腾出的空间还只能是哪个表使用,并不能让给其他的对象使用,
因为delete操作并不能使表的高水位线下降。
delete操作只适用于删除非常少量的数据,并且需要在有索引存在的情况下使用。
在没有索引的情况下按照条件删除数据,即使删除的数据量非常少,Oracle也会将全表扫描一遍;
0 recursive calls
0 db block gets
11 consistent gets
0 physical reads
0 redo size
2091 bytes sent via SQL*Net to client
416 bytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
1 sorts (memory)
0 sorts (disk)
13 rows processed
db block gets : 从buffer cache中读取的block的数量
consistent gets: 从buffer cache中读取的undo数据的block的数量
physical reads: 从磁盘读取的block的数量
redo size: DML生成的redo的大小
sorts (memory) :在内存执行的排序量
sorts (disk) :在磁盘上执行的排序量
分区:范围分区、哈希分区、列表分区
范围分区:create table table_name(...) partition by range(column_name)(partition partition_name values less than(sysdate));
create index index_name on table_name(column_name) local(partition partition_name tablespace tablespace_name);
alter table table_name truncate partition partition_name;
select * from table_name partition(partition_name);
哈希分区:create table table_name(...) partition by hash(column_name)(partition partition_name tablespace tablespace_name);
列表分区:create table table_name(...) partition by list(column_name)(partition partition_name values(value));
比较:
范围比较,返回小数据量时,哈希分区优,大范围范围分区优;
等于表达式时,哈希分区优;
索引:B树索引、位图索引、全文索引;
B树索引:适合重复性比较低的字段,唯一性的字段性能尤其快;
位图索引:适合重复率高的字段,适合count、AND/OR等操作,但不适合写操作,会对关联的记录上锁;
***************************************************************************************************************************
锁和阻塞
TM、TX锁
update会阻塞
v$lock
如果你的系统有主、外键引用关系,并且满足以下三个条件中的任意一个,那么应该考虑给外键创建索引。
a、主表上有频繁的删除操作;
b、主键上有频繁的修改操作;
c、业务上经常出现主表、从表的关联查询;
latch和等待
共享池中的latch争用;
数据缓冲池中的latch争用;
select * from v$latchname where name like 'library cache%';
共享池中如果存在大量的SQL被反复分析,就会造成很大的latch争用和长时间的等待,最常见的现象是没有绑定变量;
数据缓冲池latch争用:
访问频率非常高的数据库被称为热块,当很多用户一起去访问某几个数据库时,就会导致一些latch争用,常见的latch争用有:
buffer busy waits:当一个会话需要访问一个数据块,而这个数据块正在被另外一个用户从磁盘读取到内存中或者这个数据块正在被
另一个会话修改,当前的会话就需要等待,就会产生一个buffer busy waits等待;
cache buffer chain:当一个会话需要去访问一个内存块时,它首先要去一个像链表一样的结构中去搜索这个数据块是否在内存中,
当会话访问这个链表时需要获得一个latch,如果失败,将会产生latch cache buffer chain等待,导致这个等待的原因是访问
相同数据块的会话太多或者这个列表太长(读到内存中的数据块太多);
产生latch争用的直接原因是太多会话去访问相同的数据块导致热块问题,造成热块的原因可能是数据块设置导致或者是重复执行的sql
频繁访问一些相同数据块导致;
热块产生的原因不尽相同,按照数据块的类型,可以分成以下几种热块类型,不同热块类型处理的方式都是不同的:
a、表数据块:一些小表,频繁地查询/修改;
如果表不太大,可以考虑将表数据分布在更多的数据块上,减少数据块被多数会话同时访问的频率,但会降低查询性能;
alter table minimize records_per_block;
b、索引数据块:如果主键索引是sequence递增的1、2、3...,由于这些键值分布得非常接近,当RAC的不同实例访问时会造成数据块的争用;
使用反向索引:create index index_name on table_name(column_name) reverse;
c、索引根数据块:B树索引,访问子节点索引都会扫描根节点,造成根节点被频繁访问,可以用分区索引,一棵树就被分成多棵树了;
d、文件头数据块;
优化器
基于规则的优化器RBO和基于成本的CBO(FIRST_ROWS、ALL_ROWS);
执行计划
Cardinality基数、执行计划、统计信息、filter/access
Hint
/*+ index(table_name index_name)*/...
并非任何时候Hint都起作用,如果CBO认为使用Hint会导致错误的结果,Hint将被忽略;
e.g.:select /*+ index(table_name index_name)*/ count(1) from table_name,如果index_name中可能有空值,Hint将被忽略,因为走索引得到值将缺少;
如果表中指定了别名,那么Hint中也必须使用别名,否则CBO也会忽略Hint;
ALL_ROWS、FIRST_ROWS、RULE、FULL、HASH、INDEX、NO_INDEX、INDEX_DESC、INDEX_COMBINE(使用位图索引)、INDE_FFS(INDEX FAST FULL SCAN)、
INDEX_SS:(INDEX SKIP SCAN,当谓词条件不在联合索引的第一列时,可以通过INDEX_SS来访问索引获得数据;或当联合索引第一列重复率很高时,这种方式比全表扫效率高)、
LEADING:先访问哪个表,即驱动表;select /*+ leading(t2, t1)*/t1.* from t1, t2 where ...
USE_HASH(HASH关联)、USE_NL(循环嵌套)、USE_MERGE(归并关联)
索引扫描的几种类型:索引唯一扫描、索引范围扫描、索引全扫描、索引跳跃扫描、索引快速扫描;
索引跳跃扫描:为解决组合索引中第一个索引列不再条件中而被优化器拒绝使用索引的问题,以及解决组合索引中间列没有在条件中而导致扫描数据量增加的问题,
我们必须搜集大量的数据读取类型,并对这些类型所使用到的列进行综合分析,创建出最优的索引,以确保查询条件中所使用到的列最大限度地连续使用“=”运算符。
索引快速扫描:索引快速扫描每次I/O读取的是多个数据块,这也是该方式与索引全扫描之间的主要区别。
当SQL语句的执行路径可以使用分布在多个表上的多个索引时, ORACLE会同时使用多个索引并在运行时对它们的记录进行合并, 检索出仅对全部索引有效的记录.
在ORACLE选择执行路径时,唯一性索引的等级高于非唯一性索引. 然而这个规则只有
当WHERE子句中索引列和常量比较才有效.如果索引列和其他表的索引类相比较. 这种子句在优化器中的等级是非常低的.
如果不同表中两个想同等级的索引将被引用, FROM子句中表的顺序将决定哪个会被率先使用. FROM子句中最后的表的索引将有最高的优先级.
如果相同表中两个想同等级的索引将被引用, WHERE子句中最先被引用的索引将有最高的优先级.
不要对索引进行运算、!=、||、NOT、IS NULL、IS NOT NULL、OR,把OR用union替换;
ORDER BY 子句只在两种严格的条件下使用索引.
a、ORDER BY中所有的列必须包含在相同的索引中并保持在索引中的排列顺序.
b、ORDER BY中所有的列必须定义为非空.
sql中避免改变索引列的类型;
分析及动态采样
第一次应分析时没有统计信息会使用动态采样;
数据库三范式?
1. 原始单据与实体之间的关系
可以是一对一、一对多、多对多的关系。在一般情况下,它们是一对一的关系:即一张原始单据对应且只对应一个实体。
在特殊情况下,它们可能是一对多或多对一的关系,即一张原始单证对应多个实体,或多张原始单证对应一个实体。
这里的实体可以理解为基本表。明确这种对应关系后,对我们设计录入界面大有好处。
〖例1〗:一份员工履历资料,在人力资源信息系统中,就对应三个基本表:员工基本情况表、社会关系表、工作简历表。
这就是“一张原始单证对应多个实体”的典型例子。
2. 主键与外键
一般而言,一个实体不能既无主键又无外键。在E—R 图中, 处于叶子部位的实体, 可以定义主键,也可以不定义主键
(因为它无子孙), 但必须要有外键(因为它有父亲)。
主键与外键的设计,在全局数据库的设计中,占有重要地位。当全局数据库的设计完成以后,有个美国数据库设计专
家说:“键,到处都是键,除了键之外,什么也没有”,这就是他的数据库设计经验之谈,也反映了他对信息系统核
心(数据模型)的高度抽象思想。因为:主键是实体的高度抽象,主键与外键的配对,表示实体之间的连接。
3. 基本表的性质
基本表与中间表、临时表不同,因为它具有如下四个特性:
(1) 原子性。基本表中的字段是不可再分解的。
(2) 原始性。基本表中的记录是原始数据(基础数据)的记录。
(3) 演绎性。由基本表与代码表中的数据,可以派生出所有的输出数据。
(4) 稳定性。基本表的结构是相对稳定的,表中的记录是要长期保存的。
理解基本表的性质后,在设计数据库时,就能将基本表与中间表、临时表区分开来。
4. 范式标准
基本表及其字段之间的关系, 应尽量满足第三范式。但是,满足第三范式的数据库设计,往往不是最好的设计。
为了提高数据库的运行效率,常常需要降低范式标准:适当增加冗余,达到以空间换时间的目的。
〖例2〗:有一张存放商品的基本表,如表1所示。“金额”这个字段的存在,表明该表的设计不满足第三范式,
因为“金额”可以由“单价”乘以“数量”得到,说明“金额”是冗余字段。但是,增加“金额”这个冗余字段,
可以提高查询统计的速度,这就是以空间换时间的作法。
在Rose 2002中,规定列有两种类型:数据列和计算列。“金额”这样的列被称为“计算列”,而“单价”和
“数量”这样的列被称为“数据列”。
表1 商品表的表结构
商品名称 商品型号 单价 数量 金额
电视机 29吋 2,500 40 100,000
5. 通俗地理解三个范式
通俗地理解三个范式,对于数据库设计大有好处。在数据库设计中,为了更好地应用三个范式,就必须通俗地理解
三个范式(通俗地理解是够用的理解,并不是最科学最准确的理解):
第一范式:1NF是对属性的原子性约束,要求属性具有原子性,不可再分解;
第二范式:2NF是对记录的惟一性约束,要求记录有惟一标识,即实体的惟一性;
第三范式:3NF是对字段冗余性的约束,即任何字段不能由其他字段派生出来,它要求字段没有冗余。
没有冗余的数据库设计可以做到。但是,没有冗余的数据库未必是最好的数据库,有时为了提高运行效率,就必须降
低范式标准,适当保留冗余数据。具体做法是:在概念数据模型设计时遵守第三范式,降低范式标准的工作放到物理
数据模型设计时考虑。降低范式就是增加字段,允许冗余。
6. 要善于识别与正确处理多对多的关系
若两个实体之间存在多对多的关系,则应消除这种关系。消除的办法是,在两者之间增加第三个实体。这样,原来一
个多对多的关系,现在变为两个一对多的关系。要将原来两个实体的属性合理地分配到三个实体中去。这里的第三个
实体,实质上是一个较复杂的关系,它对应一张基本表。一般来讲,数据库设计工具不能识别多对多的关系,但能处
理多对多的关系。
〖例3〗:在“图书馆信息系统”中,“图书”是一个实体,“读者”也是一个实体。这两个实体之间的关系,是一
个典型的多对多关系:一本图书在不同时间可以被多个读者借阅,一个读者又可以借多本图书。为此,要在二者之
间增加第三个实体,该实体取名为“借还书”,它的属性为:借还时间、借还标志(0表示借书,1表示还书),另外,
它还应该有两个外键(“图书”的主键,“读者”的主键),使它能与“图书”和“读者”连接。
7. 主键PK的取值方法
PK是供程序员使用的表间连接工具,可以是一无物理意义的数字串, 由程序自动加1来实现。也可以是有物理意义
的字段名或字段名的组合。不过前者比后者好。当PK是字段名的组合时,建议字段的个数不要太多,多了不但索引
占用空间大,而且速度也慢。
8. 正确认识数据冗余
主键与外键在多表中的重复出现, 不属于数据冗余,这个概念必须清楚,事实上有许多人还不清楚。非键字段的重
复出现, 才是数据冗余!而且是一种低级冗余,即重复性的冗余。高级冗余不是字段的重复出现,而是字段的派生出现。
〖例4〗:商品中的“单价、数量、金额”三个字段,“金额”就是由“单价”乘以“数量”派生出来的,它就是冗余,
而且是一种高级冗余。冗余的目的是为了提高处理速度。只有低级冗余才会增加数据的不一致性,因为同一数据,可
能从不同时间、地点、角色上多次录入。因此,我们提倡高级冗余(派生性冗余),反对低级冗余(重复性冗余)。
9. E--R图没有标准答案
信息系统的E--R图没有标准答案,因为它的设计与画法不是惟一的,只要它覆盖了系统需求的业务范围和功能内容,
就是可行的。反之要修改E--R图。尽管它没有惟一的标准答案,并不意味着可以随意设计。好的E—R图的标准是:
结构清晰、关联简洁、实体个数适中、属性分配合理、没有低级冗余。
10 . 视图技术在数据库设计中很有用
与基本表、代码表、中间表不同,视图是一种虚表,它依赖数据源的实表而存在。视图是供程序员使用数据库的
一个窗口,是基表数据综合的一种形式, 是数据处理的一种方法,是用户数据保密的一种手段。为了进行复杂处理、
提高运算速度和节省存储空间, 视图的定义深度一般不得超过三层。 若三层视图仍不够用, 则应在视图上定义临时表,
在临时表上再定义视图。这样反复交迭定义, 视图的深度就不受限制了。
对于某些与国家政治、经济、技术、军事和安全利益有关的信息系统,视图的作用更加重要。这些系统的基本表完
成物理设计之后,立即在基本表上建立第一层视图,这层视图的个数和结构,与基本表的个数和结构是完全相同。
并且规定,所有的程序员,一律只准在视图上操作。只有数据库管理员,带着多个人员共同掌握的“安全钥匙”,
才能直接在基本表上操作。请读者想想:这是为什么?
11. 中间表、报表和临时表
中间表是存放统计数据的表,它是为数据仓库、输出报表或查询结果而设计的,有时它没有主键与外键(数据仓
库除外)。临时表是程序员个人设计的,存放临时记录,为个人所用。基表和中间表由DBA维护,临时表由程序员
自己用程序自动维护。
12. 完整性约束表现在三个方面
域的完整性:用Check来实现约束,在数据库设计工具中,对字段的取值范围进行定义时,有一个Check按钮,通
过它定义字段的值城。
参照完整性:用PK、FK、表级触发器来实现。
用户定义完整性:它是一些业务规则,用存储过程和触发器来实现。
13. 防止数据库设计打补丁的方法是“三少原则”
(1) 一个数据库中表的个数越少越好。只有表的个数少了,才能说明系统的E--R图少而精,去掉了重复的多余的
实体,形成了对客观世界的高度抽象,进行了系统的数据集成,防止了打补丁式的设计;
(2) 一个表中组合主键的字段个数越少越好。因为主键的作用,一是建主键索引,二是做为子表的外键,所以组
合主键的字段个数少了,不仅节省了运行时间,而且节省了索引存储空间;
(3) 一个表中的字段个数越少越好。只有字段的个数少了,才能说明在系统中不存在数据重复,且很少有数据冗
余,更重要的是督促读者学会“列变行”,这样就防止了将子表中的字段拉入到主表中去,在主表中留下许
多空余的字段。所谓“列变行”,就是将主表中的一部分内容拉出去,另外单独建一个子表。这个方法很简
单,有的人就是不习惯、不采纳、不执行。
数据库设计的实用原则是:在数据冗余和处理速度之间找到合适的平衡点。“三少”是一个整体概念,综合观点,
不能孤立某一个原则。该原则是相对的,不是绝对的。“三多”原则肯定是错误的。试想:若覆盖系统同样的功
能,一百个实体(共一千个属性) 的E--R图,肯定比二百个实体(共二千个属性) 的E--R图,要好得多。
提倡“三少”原则,是叫读者学会利用数据库设计技术进行系统的数据集成。数据集成的步骤是将文件系统集成
为应用数据库,将应用数据库集成为主题数据库,将主题数据库集成为全局综合数据库。集成的程度越高,数据
共享性就越强,信息孤岛现象就越少,整个企业信息系统的全局E—R图中实体的个数、主键的个数、属性的个数
就会越少。
提倡“三少”原则的目的,是防止读者利用打补丁技术,不断地对数据库进行增删改,使企业数据库变成了随意
设计数据库表的“垃圾堆”,或数据库表的“大杂院”,最后造成数据库中的基本表、代码表、中间表、临时表
杂乱无章,不计其数,导致企事业单位的信息系统无法维护而瘫痪。
“三多”原则任何人都可以做到,该原则是“打补丁方法”设计数据库的歪理学说。“三少”原则是少而精的
原则,它要求有较高的数据库设计技巧与艺术,不是任何人都能做到的,因为该原则是杜绝用“打补丁方法”
设计数据库的理论依据。
14. 提高数据库运行效率的办法
在给定的系统硬件和系统软件条件下,提高数据库系统的运行效率的办法是:
(1) 在数据库物理设计时,降低范式,增加冗余, 少用触发器, 多用存储过程。
(2) 当计算非常复杂、而且记录条数非常巨大时(例如一千万条),复杂计算要先在数据库外面,以文件系统方
式用C++语言计算处理完成之后,最后才入库追加到表中去。这是电信计费系统设计的经验。
(3) 发现某个表的记录太多,例如超过一千万条,则要对该表进行水平分割。水平分割的做法是,以该表主键
PK的某个值为界线,将该表的记录水平分割为两个表。若发现某个表的字段太多,例如超过八十个,则
垂直分割该表,将原来的一个表分解为两个表。
(4) 对数据库管理系统DBMS进行系统优化,即优化各种系统参数,如缓冲区个数。
(5) 在使用面向数据的SQL语言进行程序设计时,尽量采取优化算法。
总之,要提高数据库的运行效率,必须从数据库系统级优化、数据库设计级优化、程序实现级优化,这三
个层次上同时下功夫。