PyTorch 的自动微分和动态计算图

PyTorch 的自动微分和动态计算图是其核心特性,使得神经网络的训练和复杂模型的构建更加灵活。以下是一个实例演示,展示如何使用 PyTorch 进行自动微分并理解动态计算图的工作原理。

示例:自动微分与动态计算图

1. 基本自动微分
import torch

# 创建张量并启用梯度追踪
x = torch.tensor(2.0, requires_grad=True)

# 定义计算图:y = 2x^3 + x^2
y =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小赖同学啊

感谢上帝的投喂

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值