PyTorch 的自动微分和动态计算图是其核心特性,使得神经网络的训练和复杂模型的构建更加灵活。以下是一个实例演示,展示如何使用 PyTorch 进行自动微分并理解动态计算图的工作原理。 示例:自动微分与动态计算图 1. 基本自动微分 import torch # 创建张量并启用梯度追踪 x = torch.tensor(2.0, requires_grad=True) # 定义计算图:y = 2x^3 + x^2 y =