基于LangGraph的Agent测试方案与过程
一、测试目标
功能验证:确保Agent能正确理解用户意图并生成合理回复。
性能评估:测试响应时间、并发处理能力及资源占用。
鲁棒性测试:验证Agent对异常输入(如乱码、无意义问题)的处理能力。
场景化覆盖:模拟真实业务场景(如客服、知识问答)的对话流程。
二、测试方案
-
测试类型与工具
测试类型 测试方法 工具/框架
单元测试 测试Agent的独立模块(如意图识别、回复生成) pytest(Python)、unittest
集成测试 测试Agent与外部系统(如数据库、API)的交互 Postman、自定义Mock服务
端到端测试 模拟完整对话流程 Selenium(Web界面)、自定义脚本
压力测试 高并发场景下的性能测试 Locust、JMeter
安全测试 输入验证、数据加密 OWASP ZAP、Burp Suite -
测试流程
准备阶段
定义测试用例(正常/异常输入、场景化对话)。
搭建测试环境(Mock外部依赖、配置LangGraph参数)。
执行阶段
自动化执行测试用例,记录响应时间、错误日志。
分析阶段
统计测试覆盖率、生成性能报告(如响应时间分布图)。
优化阶段
根据测试结果调整Agent逻辑(如优化意图识别规则)。
三、测试过程与用例 -
单元测试:意图识别模块
测试用例1:用户意图分类
输入:“我想订一张明天去北京的机票”
预期输出:意图为flight_booking,提取关键信息(日期:明天,目的地:北京)。
测试方法:
python
def test_intent_recognition():
agent = LangGraphAgent()
user_input = "我想订一张明天去北京的机票"
intent, entities = agent.parse_intent(user_input)
assert intent == "flight_booking"
assert entities["date"] == "明天"
assert entities["destination"] == "北京"
测试用例2:模糊意图处理
输入:"我有点事想咨询"
预期输出:意图为general_inquiry,提示用户补充具体问题。
- 集成测试:对话流程管理
测试用例3:多轮对话上下文保持
对话流程:
用户:"帮我查一下天气"
Agent:"您想查询哪个城市的天气?"
用户:"北京"
Agent:"北京今天天气晴,温度25℃"
测试方法:
模拟用户输入,验证Agent是否能正确关联上下文(如第3轮输入的“北京”对应第2轮的问题)。
测试用例4:外部API调用
场景:用户查询航班信息。
测试步骤:
Mock航班API返回固定数据(如航班号、时间)。
用户输入:“明天从上海到深圳的航班有哪些?”
验证Agent是否正确调用API并返回结果。
3. 端到端测试:完整对话流程
测试用例5:智能客服场景
对话流程:
用户:"我的订单还没收到"
Agent:"请提供订单号"
用户:"123456"
Agent:"您的订单已发货,预计明天送达"
测试方法:
使用Selenium自动化Web界面,模拟用户输入并验证回复。
4. 压力测试:高并发场景
测试用例6:100并发用户查询
步骤:
使用Locust模拟100用户同时发起查询。
监控响应时间(要求90%请求在2秒内完成)。
检查系统资源占用(CPU、内存)。
- 安全测试:异常输入处理
测试用例7:SQL注入攻击
输入:“1’ OR ‘1’='1”
预期输出:Agent拒绝执行并提示“输入无效”。
测试用例8:敏感信息过滤
输入:“我的银行卡号是1234567890”
预期输出:Agent自动屏蔽敏感信息或提示用户。
四、测试报告模板
测试项 结果 备注
意图识别准确率 92% 3个测试用例失败(需优化规则)
平均响应时间 1.5秒 满足SLA要求(<2秒)
高并发错误率 0.5% 需优化数据库连接池
安全漏洞 无 通过OWASP ZAP扫描
五、总结
功能覆盖:通过单元测试、集成测试和端到端测试,确保Agent的核心功能稳定。
性能优化:压力测试暴露了并发场景下的瓶颈,需优化数据库查询和缓存策略。
安全加固:安全测试确保Agent能抵御常见攻击(如SQL注入、敏感信息泄露)。
通过以上测试方案,可以系统化地验证LangGraph Agent的可靠性,满足业务需求。