《tricks of trade》读书笔记 bias和variance

Several theoretical efforts have analyzed the process of learning by minimizing the error on a training set (a process sometimes called Empirical Risk Minimization,经验风险最小化)
Some of those theoretical analyses are based on decomposing the generalization
error into two terms: bias and variance. The bias is a measure of how much the network output, averaged over all possible datasets differs from the desired function. The variance is a measure of how much the network output varies between datasets. Early in training, the bias is large because the network output is far from the desired function. The variance is very small because the data has had little influence yet. Late in training, the bias is small because the network has learned the underlying function. However, if trained too long, the network will also have learned the noise specific to that dataset. This is referred to as overtraining. In such a case, the variance will be large because the noise varies between datasets. It can be shown that the minimum total error will occur when the sum of bias and variance are minimal.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值