6、Greatest Common Divisor, Least Common Multiple - 最大公约数,最小公倍数

本文深入探讨了求解两个正整数最大公约数和最小公倍数的方法,包括质因数分解法、辗转相除法(欧几里德算法)等,并提供了详细的算法解释和代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题如下:

输入两个正整数m和n,求其最大公约数和最小公倍数。

回顾一下相关概念:

首先是约数倍数:如果数a能被数b整除(a/b无余数),a就叫做b的倍数,b就叫做a的约数。约数和倍数都表示一个整数与另一个整数的关系,不能单独存在。如只能说16是某数的倍数,2是某数的约数,而不能孤立地说16是倍数,2是约数

最大公约数:即最大公因子,指两个或多个整数共有约数中最大的一个;a、b的最大公约数记为(a,b),同样的,a,b,c的最大公约数记为(a,b,c)

最小公倍数:与最大公约数相对,a、b的最小公倍数记作[a,b](所有因子的乘积 / 最大公约数 = 最小公倍数)

求最大公约数有多种方法,常见的有质因数分解法、短除法辗转相除法更相减损法

 

质因数分解法 参考以前文章 >> Prime Factorization - 分解质因数 

把每个数分别分解质因数,再把各数中的全部公有质因数提取出来连乘,所得的积就是这几个数的最大公约数

全部公有的质因数和独有的质因数提取出来连乘,所得的积就是这几个数的最小公倍数;

8 -> {2,2,2},12 -> {2,2,3} ,公有两个2,故最大公约数为2x2,

代码如下:

  /**6、greatest common divisor, least common multiple 最大公约数、最小公倍数
    * 外层for循环只遍历一次,每个元素只对应内循环的一个相等的值,只需保证内循环找到相同元素时remove掉并中断当前内循环;
    * */
   public static void gcd(int m,int n){
        int gcd = 1;
        List<Integer> innerList = factorizationPrime(n);
        for(Integer it1 : factorizationPrime(m)){
            for(Integer it2 : innerList){
                if(it1.equals(it2)){
                    gcd *= it1;
                    innerList.remove(it2);
                    break;
                }
            }
        }
        System.out.println(m+","+n+"的最大公约数是:" + gcd+",最小公倍数是:" +m*n/gcd);
    }
    static List<Integer> factorizationPrime(int x){
        List<Integer> results = new ArrayList<>();
        for(int i = 2; i <= Math.sqrt(x); i++){
            while(x % i == 0){
                x = x/i;
                results.add(i);
            }
        }
        results.add(x);
        return results;
    }

 

辗转相除法, 又名欧几里德算法(Euclidean algorithm)

定理:两个整数的最大公约数等于其中较小的那个数和两数相除余数的最大公约数。最大公约数(Greatest Common Divisor)缩写为GCD。gcd(a,b) = gcd(b,a mod b) (不妨设a>b 且r=a mod b ,r不为0) -> 若 a,b 且 a = bh + r,其中 h,r,则 gcd(a,b) = gcd(b,r)

用较大数除以较小数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。最后的除数就是这两个数的最大公约数。

代码如下:

    public static void gcd2(int m, int n){
        int gcd = calculateGCD(m,n);
        System.out.println(m+","+n+"的最大公约数是:" + gcd+",最小公倍数是:" +m*n/gcd);
    }
    static int calculateGCD(int m, int n){
        while (true){
            if ((m = m % n) == 0)
                return n;
            if ((n = n % m) == 0)
                return m;
        }
    }

or

     public static int calculateGCD(int p,int q){
        if(q == 0) return p;
        int r = p%q;
        return gcd(q,r);
    }

结果:

### Python 实现求解最大公约数最小公倍数 #### 使用辗转相除法计算最大公约数 对于两个给定的整数 `x` 和 `y`,可以采用辗转相除法来寻找它们之间的最大公约数。这种方法通过不断用较大数去除较小数直到余数为零为止,在此过程中最后得到的小数值即为所求的最大公约数。 ```python def gcd(a: int, b: int) -> int: """Calculate the Greatest Common Divisor using Euclidean algorithm.""" while b != 0: a, b = b, a % b return abs(a) print(gcd(48, 18)) # 输出应为6 ``` 上述函数实现了基于欧几里得算法(也称为辗转相除法)的最大公约数计算逻辑[^1]。 #### 计算多个数的最大公约数 当面对多于两个数字的情况时,可以通过迭代方式调用二元GCD函数逐步缩小范围直至获得最终结果: ```python from functools import reduce numbers = [6, 12, 32, 80] result_gcd = reduce(lambda x, y: gcd(x, y), numbers) print(f"The GCD of {numbers} is {result_gcd}") ``` 这段代码展示了如何利用内置模块中的reduce功能处理列表形式输入的数据集并找到其共同因子。 #### 最小公倍数(LCM) 的定义及其与GCD的关系 两个正整数a和b之间存在这样的关系:两者的乘积等于这两个数各自质因数分解后的所有不同素因子幂次方之积;而这个值同时也正好等于两者各自的最小公倍数LCM与其最大公约数GCD的乘积。因此可以根据这一性质快速得出任意一对互质或不完全互质自然数间的最小公倍数表达式\[ \text{LCM}(a,b)=\frac{|ab|}{\gcd(a,b)} \][^2]。 #### 结合GCD实现最小公倍数计算 有了前面提到的最大公约数解决方案作为基础之后,现在只需要简单修改就能完成最小公倍数的功能扩展: ```python def lcm(a: int, b: int) -> float: """Calculate Least Common Multiple based on previously defined GCD function""" return abs((a * b) / gcd(a, b)) # 测试案例 pairs = [(4, 5), (7, 9)] for pair in pairs: print(f"LCM({pair})={lcm(*pair):.0f}") ``` 以上程序片段说明了怎样借助已有的工具去构建新的数学运算能力——这里指的就是由最大公约数最小公倍数转换过程[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值