注意力农民
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
39、乔恩斯敦重击者分析系统配置指南
本博客介绍了乔恩斯敦重击者分析系统的配置指南,涵盖使用 Azure 服务(如事件中心、流分析、数据湖存储和分析)进行数据采集、处理和验证的完整流程。详细内容包括 PowerShell 脚本加载事件数据、批量和流处理的验证方法、服务的清理步骤,以及各 Azure 服务的详细配置与操作。适用于希望构建端到端数据分析解决方案的技术人员参考。原创 2025-08-06 04:48:50 · 23 阅读 · 0 评论 -
38、配置分析系统:从设计到实现
本文详细介绍了基于 Azure 服务构建高效分析系统的设计与配置过程。涵盖 Lambda 架构的热路径与冷路径数据处理、Azure 服务创建与配置、命名约定等内容,并提供了系统验证、测试及优化建议,帮助读者实现稳定且可扩展的数据分析解决方案。原创 2025-08-05 12:33:49 · 36 阅读 · 0 评论 -
37、使用 PowerShell 搭建 Azure 服务及配置分析系统
本文详细介绍了如何使用 PowerShell 自动化搭建和配置 Azure 服务,并构建一个基于 Lambda 架构的 Jonestown Sluggers 分析系统。涵盖 Event Hub、Stream Analytics、Data Lake Analytics、SQL Server、Data Factory、App 注册、密钥保管库等多个服务的配置与优化,适用于实时数据处理和批量分析场景。原创 2025-08-04 12:34:00 · 23 阅读 · 0 评论 -
36、云服务版本控制、备份及资源配置指南
本文档提供了关于云服务版本控制、备份策略及 Azure 资源配置的详细指南,涵盖 Azure Data Factory 的版本控制最佳实践、SQL 数据库的备份与版本管理、Azure PowerShell 的安装与配置、资源命名规范以及常用 Azure 服务(如存储账户、数据湖、事件中心、流分析、SQL Server 和密钥保管库)的创建步骤。此外,还介绍了微软 Azure 认证及其考试信息,帮助读者提升云服务管理与数据工程实践能力。原创 2025-08-03 16:44:49 · 31 阅读 · 0 评论 -
35、构建实用且安全的Azure数据分析系统
本文详细介绍了如何在Azure环境中构建一个实用且安全的数据分析系统,涵盖数据移动、数据目录的构建、版本控制与备份策略等内容。通过合理利用Azure服务和工具,如Blob存储、数据湖存储、流分析和Azure数据工厂(ADF),可以有效提高数据管理的效率和安全性。同时,文章还探讨了数据安全与合规性的重要性,并提出了未来发展趋势与相关建议,为开发者和企业提供了全面的指导。原创 2025-08-02 16:57:44 · 23 阅读 · 0 评论 -
34、使用ADF导入文件数据
本文介绍了如何使用Azure Data Factory(ADF)将文件数据导入到SQL数据库(SQLDB)的操作流程,包括创建数据集、配置复制活动和管道等关键步骤。同时,还提供了通过Azure PowerShell创建数据集和管道的具体方法,以及处理重复数据和跨数据库查询的解决方案。通过实际练习,帮助用户掌握ADF数据导入的核心技能,适用于数据处理和分析场景。原创 2025-08-01 14:40:18 · 54 阅读 · 0 评论 -
33、数据工厂与 SQL 数据库集成:从基础到实践
本文详细介绍了如何将 Azure Data Factory (ADF) 与 SQL 数据库集成,涵盖从基础配置到实践操作的完整流程。内容包括生成 SAS 令牌、创建外部数据源和外部表、使用 BULK INSERT 导入 Blob 文件数据、配置 ADF 链接服务和数据集、构建 ADF 管道以及测试与监控数据移动过程。通过这些步骤,可以高效实现数据从 ADLS 到 SQLDB 的迁移和处理,适用于各种数据集成场景。原创 2025-07-31 09:50:44 · 31 阅读 · 0 评论 -
32、优化Azure SQL数据库管理与数据集成的实用指南
本文深入探讨了如何优化Azure SQL数据库的管理与数据集成,包括数据库配置调整、使用弹性池降低成本、恢复策略设置以及保障私有数据安全的访问方法。同时,文章详细介绍了外部数据源和Azure Data Factory(ADF)在数据集成中的应用,涵盖跨数据库查询配置、性能与一致性优化,以及数据导入的具体步骤。通过案例分析,展示了如何综合运用这些技术实现高效的数据管理和集成,帮助企业更好地处理和分析数据。原创 2025-07-30 11:02:14 · 24 阅读 · 0 评论 -
31、优化 SQLDB 成本:全面指南
本文详细介绍了如何优化 Azure SQL 数据库(SQLDB)的成本,包括 SQLDB 的定价结构、性能层级、定价模型以及弹性池、无服务器模式等成本优化策略。通过合理选择配置和调整数据库资源,可以有效降低 SQLDB 的总体成本,同时确保性能和可用性。文章还结合实际案例,说明如何针对不同数据库特点进行优化,并提供了持续监控和调整的建议。原创 2025-07-29 13:33:37 · 21 阅读 · 0 评论 -
30、Azure SQL Database 可用性、恢复与成本优化
本文探讨了Azure SQL Database的可用性与恢复策略,包括备份设置、地理复制、故障转移及警报创建,同时深入分析了成本优化方法,如降低服务层级、数据库合并和存储优化,通过评估、实施与监控流程实现性能与成本的平衡,适用于希望提升数据库稳定性并控制云成本的技术人员。原创 2025-07-28 15:47:56 · 46 阅读 · 0 评论 -
29、如何创建和管理 Azure SQL 数据库
本文详细介绍了如何在 Azure 中创建和管理 SQL 数据库,包括选择合适的数据库类型、保护数据库(如设置强密码、启用高级数据安全和配置 AAD 管理员)、实施备份与恢复策略(如导出导入数据库、恢复数据库和创建数据库副本)以及配置长期备份保留策略。同时,文章总结了不同场景下的操作选择,并梳理了整个数据库管理的流程。最后,还提供了一些注意事项,以帮助用户更好地管理 Azure SQL 数据库,确保数据的安全性、可用性和可恢复性。原创 2025-07-27 09:37:53 · 25 阅读 · 0 评论 -
28、Azure数据工厂与SQL数据库管理:功能与操作指南
本博客详细介绍了Azure数据工厂与SQL数据库管理的功能与操作指南。内容涵盖使用Azure PowerShell启动管道执行、创建计划触发器、运行ADLA作业、相关练习操作以及Azure SQL数据库的创建、恢复、移动和成本优化策略。通过本文,读者可以掌握Azure数据处理和数据库管理的关键技能,从而构建高效、稳定且经济的数据分析系统。原创 2025-07-26 14:44:32 · 41 阅读 · 0 评论 -
27、使用 Azure Data Factory 复制文件
本文详细介绍了如何使用 Azure Data Factory(ADF)将文件从 Azure Files 存储高效复制到 Azure Data Lake Store(ADLS),涵盖了从存储容器创建、机密管理、链接服务配置、数据集定义到管道构建与执行的完整流程。同时,还介绍了管道的监控、性能优化、版本控制以及安全与合规性等方面的最佳实践。通过本文,读者可以全面掌握使用 ADF 实现跨存储服务数据迁移的方法,并提升数据处理任务的效率和可靠性。原创 2025-07-25 12:22:12 · 18 阅读 · 0 评论 -
26、构建 Azure 数据工厂服务及安全认证指南
本文详细介绍了如何创建 Azure Data Factory (ADF) 服务,并深入探讨了相关的安全认证机制。内容涵盖通过 Azure 门户和 PowerShell 创建 ADF 服务、构建数据管道所需的资源(如链接服务、数据集、管道和触发器),以及使用 Azure Active Directory 和 Azure Key Vault 进行安全认证的具体步骤。此外,还提供了关于服务限制、最佳实践和注意事项的实用建议,以帮助用户高效且安全地实现数据处理和分析。原创 2025-07-24 09:34:21 · 23 阅读 · 0 评论 -
25、深入探索Azure Data Lake Analytics集成与Azure Data Factory服务整合
本文深入探讨了如何利用Azure Data Lake Analytics(ADLA)与Azure Data Factory(ADF)进行高效的数据处理和分析。内容涵盖了在U-SQL脚本中使用.NET程序集、ADLA作业连接外部SQL Server数据库的方法,以及通过ADF实现数据的自动化移动与处理流程。通过实际示例和操作步骤,帮助开发者构建端到端的数据分析解决方案,提高数据处理效率。原创 2025-07-23 15:54:48 · 39 阅读 · 0 评论 -
24、深入探索Azure Data Lake Analytics与JSON数据处理
本文深入探讨了如何使用Azure Data Lake Analytics(ADLA)处理JSON格式的数据,特别是来自weather.gov API的天气观测数据。从创建U-SQL数据库和程序集,到构建DataFormats解决方案并注册相关程序集,文章详细介绍了使用JsonExtractor和MultiLevelJsonExtractor处理不同结构复杂度的JSON数据的方法。同时,对比了两种提取器的适用场景,并提供了错误处理和性能优化的建议。最后,通过一个实际的气象数据处理案例,展示了如何将解析后的数据原创 2025-07-22 11:29:33 · 45 阅读 · 0 评论 -
23、利用ADLA处理非结构化数据及读取不同文件类型
本文介绍了如何使用Azure Data Lake Analytics (ADLA)处理非结构化数据,特别是利用Azure认知服务进行图像分析,以及如何读取和处理JSON文件。涵盖了程序集的注册、U-SQL脚本的编写、数据湖中的文件管理等内容,旨在帮助开发者高效地从非结构化数据中提取有价值的信息,并扩展ADLA对不同文件格式的支持能力。原创 2025-07-21 15:50:34 · 26 阅读 · 0 评论 -
22、U-SQL 高级功能与应用实践
本文深入探讨了 U-SQL 的高级功能与应用实践,包括表索引优化数据读取性能、窗口函数对行集进行分段计算、本地 C# 函数实现复杂逻辑、以及 U-SQL 与 Azure Data Lake Analytics (ADLA) 的深度集成。通过实际示例和练习题,帮助读者掌握如何高效使用 U-SQL 进行大规模数据处理和分析。此外,还介绍了 U-SQL 数据库对象的选择、代码执行流程以及未来在大数据领域的应用展望。原创 2025-07-20 16:02:12 · 19 阅读 · 0 评论 -
21、U-SQL 复杂分析之表格使用全解析
本文详细解析了U-SQL表在复杂数据分析中的使用方法,涵盖托管表与外部表的区别、表创建与结构设计、数据分布策略、分区管理以及查询优化技巧。通过合理利用U-SQL表的分布与分区功能,可以显著提高数据处理效率,降低分析成本。文章还提供了最佳实践和常见问题解答,帮助开发者更好地规划和使用U-SQL表进行数据湖中的复杂分析任务。原创 2025-07-19 12:13:15 · 26 阅读 · 0 评论 -
20、Azure Data Lake Analytics:U-SQL 的批量查询与复杂分析
本文详细介绍了如何使用 U-SQL 在 Azure Data Lake Analytics 中进行批量查询和复杂数据分析。涵盖了 U-SQL 的基础语法、数据读取与写入、视图和表值函数的使用、JOIN 操作、处理数据结构变化、性能优化以及错误处理等内容。通过实际示例展示了如何高效地处理大规模数据,并提供了最佳实践建议,帮助开发者更好地利用 U-SQL 实现灵活高效的数据分析。原创 2025-07-18 12:16:42 · 63 阅读 · 0 评论 -
19、利用 Azure Data Lake Analytics 进行批量查询及相关操作
本文介绍了如何利用 Azure Data Lake Analytics (ADLA) 进行批量查询及相关操作,重点涵盖使用 Azure PowerShell 提交 U-SQL 作业、高效执行 U-SQL 作业、监控作业状态、分析单元 (AU) 的作用、顶点的执行机制、扩展作业执行的策略等内容。此外,还讨论了如何结合 Blob 存储进行数据读取,分析了 U-SQL 作业在不同场景下的性能表现,以及如何处理和调试常见的作业错误。最后总结了 U-SQL 作业的最佳实践,包括作业提交、性能优化、错误处理和数据管理等原创 2025-07-17 11:10:00 · 34 阅读 · 0 评论 -
18、利用 Azure Data Lake Analytics 进行批量查询
本文介绍了如何使用 Azure Data Lake Analytics 和 U-SQL 脚本进行生物识别数据的批量查询和处理。详细描述了从准备数据文件、编写 U-SQL 脚本、创建 Data Lake Analytics 服务到提交作业并分析结果的完整流程。同时,还总结了使用过程中的注意事项、常见问题及解决方法,并探讨了 ADLA 在其他数据处理场景中的扩展应用。原创 2025-07-16 10:02:20 · 40 阅读 · 0 评论 -
17、Azure 数据分析:实时查询与批量查询
本文介绍了 Azure 提供的两种重要数据分析方式:使用 Azure Stream Analytics 的实时查询和 Azure Data Lake Analytics 的批量查询。详细展示了 Stream Analytics 的 SQL 查询示例、练习解析及最佳实践,并深入解析了 Data Lake Analytics 中的 U-SQL 语言,包括提取器、输出器、文件选择器和表达式的使用。同时,还介绍了如何创建 U-SQL 作业并进行性能优化,帮助开发者高效处理海量数据,满足不同场景下的业务需求。原创 2025-07-15 09:23:54 · 43 阅读 · 0 评论 -
16、利用 Azure Stream Analytics 进行实时查询与性能管理
本文探讨了如何利用 Azure Stream Analytics 进行实时数据处理与分析,重点介绍了其内置的机器学习函数(如 AnomalyDetection_SpikeAndDip 和 AnomalyDetection_ChangePoint)在异常检测中的应用。同时,深入解析了性能管理的关键要素,包括流单元(SUs)的配置、利用率监控、事件排序和乱序数据处理方法。通过实际 SQL 示例和练习,帮助用户优化 ASA 作业的性能与效率,实现高效的实时分析解决方案。原创 2025-07-14 12:27:49 · 30 阅读 · 0 评论 -
15、Azure Stream Analytics 作业查询与时间窗口的使用
本文介绍了 Azure Stream Analytics(ASA)作业查询的创建与管理方法,详细说明了如何配置输入输出、编写查询语句以及启动作业。同时深入解析了时间窗口的类型及其应用场景,包括滚动窗口、跳跃窗口和滑动窗口的使用方式与选择依据。此外还涵盖了错误处理、输出异常处理及查询优化思路,并通过实际案例展示了 ASA 在实时数据分析中的综合应用。原创 2025-07-13 15:12:35 · 27 阅读 · 0 评论 -
14、利用 Azure Stream Analytics 进行实时查询
本文详细介绍了如何使用 Azure Stream Analytics 进行实时查询,包括创建作业、调整规模、配置输入输出源(如 Event Hubs、Data Lake Storage 和 SQL Database)、设置直通查询等关键步骤。同时分析了核心技术点,并提供了流程总结与优化建议,帮助用户高效实现实时数据处理与分析。原创 2025-07-12 12:13:36 · 45 阅读 · 0 评论 -
13、深入探索Azure Event Hubs与Stream Analytics
本文深入探讨了Azure Event Hubs和Stream Analytics的使用方法。首先,详细介绍了如何保障Event Hubs的访问安全,包括创建共享访问签名(SAS)策略、获取密钥和连接字符串,以及使用PowerShell通过REST API向Event Hub写入消息。随后,通过练习题帮助读者理解Event Hub的高可用性配置、吞吐量单位和分区的计算方法。接着,引入了Azure Stream Analytics,详细说明了其组成部分、创建过程以及输入输出的配置方法。最后,探讨了流式处理单元(原创 2025-07-11 10:20:15 · 31 阅读 · 0 评论 -
12、使用事件中心进行消息处理
本文详细介绍了如何使用Azure事件中心进行高效的消息处理。内容涵盖了事件中心的分区机制、消息日志管理、吞吐量单位配置、捕获功能设置以及安全性控制。通过合理配置分区和吞吐量单位,可以优化消息处理性能和可用性。捕获功能支持将消息批量保存到持久存储,如Blob存储或Data Lake存储,并提供了灵活的文件命名和存储格式选项。安全性方面,文章介绍了使用共享访问签名(SAS)策略、虚拟网络和IP防火墙等方法来保护事件中心免受恶意攻击。最后,总结了事件中心的关键特性,帮助用户根据实际业务需求构建高效、安全的消息处理原创 2025-07-10 14:50:51 · 27 阅读 · 0 评论 -
11、利用事件中心处理消息
本文详细介绍了如何利用 Azure 事件中心处理消息,包括事件中心的工作原理、数据收集流程、命名空间和事件中心的创建与配置、消息保留与分区设置、地理灾难恢复方案以及性能优化建议。通过乔恩斯敦重击者队的生物识别监测计划作为实际应用示例,展示了事件中心在大数据处理中的高效性和灵活性。原创 2025-07-09 11:43:17 · 24 阅读 · 0 评论 -
10、深入了解Azure Data Lake Storage与Event Hubs
本文深入探讨了Azure Data Lake Storage和Event Hubs的核心功能及应用场景。重点介绍了数据漂移及其管理方法,ADLS的文件夹结构设计,数据复制工具的使用,以及Event Hubs的消息处理机制。通过对比两种服务的功能与适用场景,为处理大规模数据和实时事件流提供了技术指导。原创 2025-07-08 11:02:13 · 32 阅读 · 0 评论 -
9、深入解析Azure Data Lake Storage:访问控制与文件夹结构搭建
本文深入解析了Azure Data Lake Storage的访问控制与文件夹结构搭建方法。详细介绍了如何设置Staging、Finance和Operations文件夹的ACL权限,以及创建用户和组的Azure PowerShell脚本。提出了基于区域框架的数据管理策略,包括Staging、Raw、Sandbox和Curated四个区域的功能与数据流动流程。探讨了数据漂移问题的应对方案、文件夹层次结构的灵活性与可扩展性,并强调了持续优化与维护的重要性。通过合理的访问控制和区域划分,可以提高数据的安全性、可管原创 2025-07-07 13:33:02 · 42 阅读 · 0 评论 -
8、Azure Storage Accounts与Data Lake Storage全面解析
本文详细解析了Azure Storage Accounts和Azure Data Lake Storage(ADLS)的功能、常见问题及解决方案。涵盖了ADLS的创建方法、访问控制策略、数据漂移的影响与应对策略,以及资源管理、成本控制和安全配置的最佳实践。通过合理使用这些存储服务,企业可以高效地存储和管理数据,保障数据安全并优化系统性能。原创 2025-07-06 16:29:36 · 21 阅读 · 0 评论 -
7、Azure 存储账户的通用存储与安全访问
本文详细介绍了 Azure 存储账户的通用存储与安全访问机制,涵盖存储队列的使用、Blob 容器的安全配置、共享访问签名(SAS 令牌)和存储访问策略的管理。此外,还提供了实际练习和解决方案,帮助用户更好地掌握 Azure 存储服务的操作技巧和最佳实践,确保数据的安全性和高效访问。原创 2025-07-05 16:46:42 · 33 阅读 · 0 评论 -
6、Azure存储服务全解析:从Blob分层到队列管理
本文全面解析了Azure存储服务的核心功能,包括Blob存储的访问分层策略、多种文件复制工具的使用,以及队列服务的创建与应用场景。通过深入探讨这些服务的配置与优化方法,帮助用户在成本、性能和系统稳定性之间找到最佳平衡,从而实现高效的数据存储与管理。原创 2025-07-04 09:48:33 · 32 阅读 · 0 评论 -
5、构建 Azure 分析系统与存储服务的全面指南
本文详细介绍了如何在 Azure 中构建一个全面的数据分析系统与存储服务方案。内容涵盖 Azure 数据分析服务(如 Data Lake Analytics、SQL Database 和 Data Factory)的成本结构与功能特性,存储账户的创建与配置,数据流动与 Lambda 架构设计,以及成本优化、性能调优、数据安全与备份策略。通过合理选择 Azure 服务和配置,可以帮助企业实现高效、安全且低成本的数据分析解决方案,并展望了未来在人工智能集成、自动化运维和混合云解决方案方面的发展方向。原创 2025-07-03 09:11:20 · 26 阅读 · 0 评论 -
4、构建 Azure 分析系统:服务、流程与成本解析
本文详细解析了如何利用 Azure 云服务构建高效的分析系统,涵盖了数据收集、实时处理、存储、批处理分析及数据查询等关键环节。文章介绍了主要的 Azure 服务及其功能优势,并深入探讨了数据处理的热路径与冷路径流程。同时,还提供了成本计算与优化策略,帮助工程师在构建系统时兼顾性能与经济性。最后,文章展望了 Azure 分析系统的未来发展,并提供了服务选择的决策树作为实践参考。原创 2025-07-02 10:57:51 · 15 阅读 · 0 评论 -
3、构建 Azure 数据分析系统:从基础到架构
本文详细介绍了如何在 Azure 云平台上构建一个高效、可扩展的数据分析系统。从 Azure 的基础架构要素(如订阅、区域和资源组)到命名约定和 Lambda 架构的原理,再到具体的 Azure 服务(如 Event Hubs、Stream Analytics 和 Data Lake Storage)的使用,全面解析了构建数据分析系统的步骤和关键技术。同时,还讨论了成本管理的最佳实践,帮助企业优化资源使用,提高系统性能。原创 2025-07-01 11:13:56 · 46 阅读 · 0 评论 -
2、数据工程:概念、实践与 Azure 工具应用
本文深入探讨了数据工程的概念、实践方法及其在企业数据分析中的关键作用。随着数据量的爆炸式增长,构建高效的数据存储、处理和分析系统变得尤为重要。文章详细介绍了微软提出的Lambda架构,解析其如何解决传统数据库模型的局限性,并结合Azure平台提供的多种工具(如Event Hubs、Stream Analytics、Data Lake存储与Analytics、SQL Database和Data Factory等),展示了如何构建一个可扩展、高容错、低延迟的大数据分析系统。通过一个棒球队的示例应用,说明了从系统原创 2025-06-30 10:17:36 · 41 阅读 · 0 评论 -
1、基于Azure的存储、流处理与批处理分析指南
本博客全面介绍了基于Azure平台的数据工程实践,涵盖数据获取、存储、流处理与批处理分析的关键技术。详细解析了Azure Storage、Azure Data Lake Storage、Event Hubs、Azure Stream Analytics、Azure Data Lake Analytics、Azure Data Factory以及Azure SQL Database等核心服务的使用方法,并通过示例和练习帮助读者掌握如何构建高效的数据处理系统。此外,还探讨了未来数据工程方向,包括数据目录管理、版原创 2025-06-29 11:56:05 · 23 阅读 · 0 评论