CCF CSP 202112-2题

CCF CSP 202112-2题

题目背景

image-20220312161230848

题目描述

image-20220312161244782

输入格式

image-20220312161306147

输出格式

image-20220312161318569

样例一

输入

3 10
2 5 8

输出

5

解释

image-20220312161420158

样例三

输入

2 10
1 3

输出

6

解释

image-20220312161538282

子任务

image-20220312161556346

提示

image-20220312161608554

题目分析

  1. 本题是1题的后续,故f(x)的计算方法可以不用改变
  2. 对于每组数据,r是固定的,也就是说g(x)是一个每隔r个数字就递增1的序列
  3. 求误差的方法依旧是针对每个f(x)进行循环,根据g(x)进行增加误差数量
  4. 误差数可能很大,明着说int肯定不够用了

题目g(x)的变化规律

image-20220312162038786

暴力思想

针对每个数字,求出f(x)和g(x),这样求得得值肯定是对的,但是要超时。

结果出发

从结果出发,对f(x)进行遍历,也就是A数组进行遍历。但是这样得话也就意味着,g(x)在这个区域内是会进行变化的,我们需要将其进行分开计算。

  1. 只有当f(x)=g(x)得时候没有误差,也就是说其区间段应该对应起来才是没有误差的,此时会出现误差,那么我们可以对每个f(x)的区间段内,判断g(x)不在同一个区间段的个数。

image-20220312163445901

针对每个f(x)段内,根据g(x)计算error

  1. 需要定义一个left,这个用于将g(逐步右推)
  2. 如果f(x)右区间已经比下一个g(x)变化点要小或相等了,那么就将g(x)进行截断,因为只需要从left到f(x)右区间这一段的用以计算,最后结束的时候,一定是末尾相同的时候,这时候后半部分不需要重复计算,因为一定跟f(x)相同,为0
  3. 而其他时候,都可以用g(x)的gr-left这个区间去计算。

AC Code

#include <iostream>
#include <cmath>
using namespace std;
int main(){
	int n, N,r;
	scanf("%d %d",&n,&N);
	r=N/(n+1);
	int A[n+2];
	A[0]=0;
	A[n+1]=N;
	for(int i=1;i<=n;i++){
		cin>>A[i]; 
	}
	long long error=0;
	int gx=0,gr=r,left;
	for(int i=1;i<=n+1;i++){
		left = A[i-1];
		while(true){
			if(A[i]<=gr){
				error+=(long long)abs(i-1-gx)*(long long)(A[i]-left);
				break;
			}else{
				error+=(long long)abs(i-1-gx)*(long long)(gr-left);
				left=gr;
				gr+=r;
				gx++;
			}
		}
	}	
	cout<<error;
	return 0;
} 

前缀和思想解法

基础思路

image-20220312170946211

基础思路差不多,但是对于g函数的处理有区别。

image-20220312171419623

AC Code

#include<iostream>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
typedef long long LL;

LL h(LL i,LL r) //求g(i)的前缀和h(i)
{ 
    if(i<0) return 0;
    else return r*((i+1)/r-1)*((i+1)/r)/2+(i+1)%r*(i/r);
}
LL cal(LL fi,LL lft,LL rgt,LL r)//给定一个f(i),计算区间里的|g(i)-f(i)|之和,前提是g(i)全部小于等于或者全部大于等于f(i)
{ 
    return abs(h(rgt,r)-h(lft-1,r)-fi*(rgt-lft+1));
}
int main()
{
	LL n,N,t;
	scanf("%lld%lld",&n,&N);
	vector<LL> a;
	a.push_back(0);//默认A[0]=0 
	for(int i=0;i<n;++i) 
	{
		scanf("%lld",&t);
		a.push_back(t);
	}
	a.push_back(N);   //把N加到末尾
	LL r=N/(n+1),ans=0;   //计算出r,ans存储结果 
	for(LL fi=0;fi<=n;++fi)  //遍历序列A中的每个数,从位置0遍历到位置n,fi表示的是f值得左边界,当遍历到n时,f的值是最大的 
	{ //遍历每个f(i)
		LL lft=a[fi],rgt=a[fi+1]-1;   //左边界为a[fi],右边界为a[fi+1]-1,在这个范围内的f值都为fi 
		if(lft/r>=fi||rgt/r<=fi) 
			ans+=cal(fi,lft,rgt,r); //如果区间内g(i)全部小于等于或者全部大于等于f(i),直接使用cal函数
		else 
			ans+=cal(fi,lft,r*fi,r)+cal(fi,r*fi+1,rgt,r); //否则将区间分成两半,分别使用cal函数
	}
	printf("%lld",ans);
	return 0;
}

总结

tips: 提示很重要,可以获取有效信息

固定变量,这个方法需要明确固定哪一个,变量不同,其结果就很大差距,同时需要结合题意观察规律,这样才能快速明白解法。

tips: 前缀和,用于求区间和简直不要太方便

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值