CCF CSP 202112-2题
题目背景
题目描述
输入格式
输出格式
样例一
输入
3 10
2 5 8
输出
5
解释
样例三
输入
2 10
1 3
输出
6
解释
子任务
提示
题目分析
- 本题是1题的后续,故f(x)的计算方法可以不用改变
- 对于每组数据,r是固定的,也就是说g(x)是一个每隔r个数字就递增1的序列
- 求误差的方法依旧是针对每个f(x)进行循环,根据g(x)进行增加误差数量
- 误差数可能很大,明着说int肯定不够用了
题目g(x)的变化规律
暴力思想
针对每个数字,求出f(x)和g(x),这样求得得值肯定是对的,但是要超时。
结果出发
从结果出发,对f(x)进行遍历,也就是A数组进行遍历。但是这样得话也就意味着,g(x)在这个区域内是会进行变化的,我们需要将其进行分开计算。
- 只有当f(x)=g(x)得时候没有误差,也就是说其区间段应该对应起来才是没有误差的,此时会出现误差,那么我们可以对每个f(x)的区间段内,判断g(x)不在同一个区间段的个数。
针对每个f(x)段内,根据g(x)计算error
- 需要定义一个left,这个用于将g(逐步右推)
- 如果f(x)右区间已经比下一个g(x)变化点要小或相等了,那么就将g(x)进行截断,因为只需要从left到f(x)右区间这一段的用以计算,最后结束的时候,一定是末尾相同的时候,这时候后半部分不需要重复计算,因为一定跟f(x)相同,为0
- 而其他时候,都可以用g(x)的gr-left这个区间去计算。
AC Code
#include <iostream>
#include <cmath>
using namespace std;
int main(){
int n, N,r;
scanf("%d %d",&n,&N);
r=N/(n+1);
int A[n+2];
A[0]=0;
A[n+1]=N;
for(int i=1;i<=n;i++){
cin>>A[i];
}
long long error=0;
int gx=0,gr=r,left;
for(int i=1;i<=n+1;i++){
left = A[i-1];
while(true){
if(A[i]<=gr){
error+=(long long)abs(i-1-gx)*(long long)(A[i]-left);
break;
}else{
error+=(long long)abs(i-1-gx)*(long long)(gr-left);
left=gr;
gr+=r;
gx++;
}
}
}
cout<<error;
return 0;
}
前缀和思想解法
基础思路
基础思路差不多,但是对于g函数的处理有区别。
AC Code
#include<iostream>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
typedef long long LL;
LL h(LL i,LL r) //求g(i)的前缀和h(i)
{
if(i<0) return 0;
else return r*((i+1)/r-1)*((i+1)/r)/2+(i+1)%r*(i/r);
}
LL cal(LL fi,LL lft,LL rgt,LL r)//给定一个f(i),计算区间里的|g(i)-f(i)|之和,前提是g(i)全部小于等于或者全部大于等于f(i)
{
return abs(h(rgt,r)-h(lft-1,r)-fi*(rgt-lft+1));
}
int main()
{
LL n,N,t;
scanf("%lld%lld",&n,&N);
vector<LL> a;
a.push_back(0);//默认A[0]=0
for(int i=0;i<n;++i)
{
scanf("%lld",&t);
a.push_back(t);
}
a.push_back(N); //把N加到末尾
LL r=N/(n+1),ans=0; //计算出r,ans存储结果
for(LL fi=0;fi<=n;++fi) //遍历序列A中的每个数,从位置0遍历到位置n,fi表示的是f值得左边界,当遍历到n时,f的值是最大的
{ //遍历每个f(i)
LL lft=a[fi],rgt=a[fi+1]-1; //左边界为a[fi],右边界为a[fi+1]-1,在这个范围内的f值都为fi
if(lft/r>=fi||rgt/r<=fi)
ans+=cal(fi,lft,rgt,r); //如果区间内g(i)全部小于等于或者全部大于等于f(i),直接使用cal函数
else
ans+=cal(fi,lft,r*fi,r)+cal(fi,r*fi+1,rgt,r); //否则将区间分成两半,分别使用cal函数
}
printf("%lld",ans);
return 0;
}
总结
tips: 提示很重要,可以获取有效信息
固定变量,这个方法需要明确固定哪一个,变量不同,其结果就很大差距,同时需要结合题意观察规律,这样才能快速明白解法。
tips: 前缀和,用于求区间和简直不要太方便