TH_NUM的博客

日常积累

Android中Bundle类的作用

Android中Bundle类的作用Bundle类用作携带数据,它类似于Map,用于存放key-value名值对形式的值。相对于Map,它提供了各种常用类型的putXxx()/getXxx()方法,如:putString()/getString()和putInt()/getInt(),putXxx...

2016-06-23 14:06:39

阅读数:205

评论数:0

Android图像处理之Bitmap类

Bitmap是Android系统中的图像处理的最重要类之一。用它可以获取图像文件信息,进行图像剪切、旋转、缩放等操作,并可以指定格式保存图像文件。本文从应用的角度,着重介绍怎么用Bitmap来实现这些功能。 1. Bitmap 的生成1.1 BitmapFactory decode出Bitmap*...

2016-06-23 13:22:19

阅读数:154

评论数:0

Android之SurfaceView学习(一)

Android之SurfaceView学习(一)首先我们先来看下官方API对SurfaceView的介绍SurfaceView的API介绍Provides a dedicated drawing surface embedded inside of a view hierarchy. You ca...

2016-06-23 12:43:41

阅读数:195

评论数:0

SoundPool

使用SoundPool播放音效如果应用程序经常播放密集、急促而又短暂的音效(如游戏音效)那么使用MediaPlayer显得有些不太适合了。因为MediaPlayer存在如下缺点:1) 延时时间较长,且资源占用率高。2) 不支持多个音频同时播放。Android中除了MediaPlayer播放音频之外...

2016-06-23 11:52:10

阅读数:171

评论数:0

ByteBuffer.allocateDirect 与 allocate 方法

一、首先是JavaDocument: 直接与非直接缓冲区 字节缓冲区要么是直接的,要么是非直接的。如果为直接字节缓冲区,则 Java 虚拟机会尽最大努力直接在此缓冲区上执行本机 I/O 操作。也就是说,在每次调用基础操作系统的一个本机 I/O 操作之前(或之后),虚拟机都会尽量避免将...

2016-06-21 11:53:56

阅读数:1277

评论数:0

Resources

数据包package:android.content.res 主要类:Resources InputStream openRawResource(int id) 获取资源的数据流,读取资源数据把一个图片资源,添加你的文件到你工程中res/drawable/目录中去,从这里,你就可以引用它到你...

2016-06-21 11:35:34

阅读数:315

评论数:0

Android开发之asserts读取文件

从assert资源加载图片或者三维的obj输入流: public static byte[] loadFromAssets(Context context,String picName) { byte[] result=null; try ...

2016-06-21 10:59:31

阅读数:312

评论数:0

计算机系统结构

《计算机系统结构》往年考题参考答案 仅供参考! 一、简答题 1. 指令流水计算机中,采用独立的指令缓存与数据缓存对系统性能有什么好处。 【答】 ①解决访存和取指的结构冲突,加速流水线;②数据和指令的访问有所不同,设置单独的 Cache 有利于提高命中率,减少平均访存时间。 2. 什么是指...

2016-06-19 15:42:44

阅读数:1434

评论数:0

幂法求矩阵的主特征值和特征向量

#include<iostream> using namespace std; int main() { double A[10]={1.0,1.0,0.5,1.0,1.0,0.25,0.5,0.25,2.0};//矩阵 double v[3]; double ...

2016-06-10 10:11:20

阅读数:2099

评论数:0

HMAC和NMAC

NMAC和HMAC与1996年提出,1997年HMAC成为RFC2012,事实上是Internet标准 NMAC构造: NMAC(k1,k2)(M)=Hk1(Hk2(M)) HMAC构造:使用标准初始值 Hk(M)=H(K’ XOR opad||H(K’ XOR ipad ||M )) 其中...

2016-06-06 19:17:15

阅读数:406

评论数:0

B-M求线性移位寄存器

1、B-M算法求线性综合解的过程 2、假设a(11)=(00100011101)是二元域GF(2)上的一个长度为11的序列,试用B-M算法求其线性综合解。#include<iostream> using namespace std; void B_M(int a,int nn) {...

2016-06-06 18:34:26

阅读数:663

评论数:0

CCM认证加密

认证加密方案,既保证数据的机密性,又保证数据的完整性。 加密和认证:加密使用CTR模式,认证使用CBC-MAC 令是明文,K为加密密钥。在计数器模式中,选择计数器ctr,构造一系列计数器T0, T1, T2, …, Tn: Ti=(ctr+i) mod 2^m。计算密文yi=xi XOR Ek...

2016-06-06 11:23:47

阅读数:1064

评论数:0

HMM(Forward algorithm)向前算法

由马尔科夫模型MM可知:对于一个系统,由一个状态转至另一个状态的转换过程中,存在着转移概率,并且这种转移概率可以依据其紧接的前一种状态推算出来,与该系统的原始状态和此次转移前的马尔可夫过程无关。隐马尔可夫模型(HiddenMarkov models,HMM)是马尔可夫链的一种,它的状态不能直接观察...

2016-06-02 21:04:22

阅读数:1964

评论数:0

VC维

为什么引入VC维 PAC中以|H |来刻画样本复杂度,它存在以下不足:可能导致非常弱的边界;对于无限假设空间的情形, 1/b*(log2(|H|)+log2(1/d))((2)式)根本无法使用。因此有必要引入另一度量标准VC 维。假设空间的VC 维, 用VCdim(H)表示, 被定义为最大的样本...

2016-06-02 12:32:53

阅读数:3693

评论数:0

PAC可学习性

PACPAC可学习性 训练学习器的目标是,能够从合理数量的训练数据中通过合理的计算量可靠的学习到知识。 机器学习的现实情况: 1、除非对每个可能的数据进行训练,否则总会存在多个假设使得真实错误率不为0,即学习器无法保证和目标函数完全一致 2、训练样本是随机选取的,训练样本总有一定的误导性什...

2016-06-02 12:21:47

阅读数:2720

评论数:0

机器学习---假设的评估问题

机器学习的假设理论:任一假设若在足够大的训练样例集中很好的逼近目标函数,它也能在未见实例中很好地逼近目标函数。 伯努利分布的期望 np 方差 np(1-p) 训练样例(Sample)的错误率:errors 测试数据(data)的错误率:errorD评估偏差 bias=E(errors)-...

2016-06-02 12:12:32

阅读数:684

评论数:0

K-means

K-Means 基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标. k个初始类聚类中心点的选取对聚类结果具有较大的 公式 影响,因为在该算法第一步中是随机的选取任意k...

2016-06-02 12:07:06

阅读数:449

评论数:0

决策树

决策树决策树(decision tree)是一个树结构(可以是二叉树或非二叉树)。其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别。使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶...

2016-06-02 12:02:33

阅读数:1530

评论数:0

集成学习

集成学习:有效的前提: 1. 每个弱分类器的错误率不能高于0.5。 2.弱分类器之间的性能要有较大的差别,否则集成效果不是很好。 集成学习的实验性结论: Boosting方法的集成分类器效果明显优于bagging,但是在某些数据集boosting算法的效果还不如单个分类器的。 使用...

2016-06-02 11:35:23

阅读数:875

评论数:0

KNN

KNNKNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方 法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。KNN复杂度分析kNN算法本身简单有效,它是一种l...

2016-06-02 11:21:17

阅读数:1831

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭