单源赋权最短路径

单源赋权最短路径指给定一个赋权图G=(V,E)和一个输入顶点s,从s出发到图中其他顶点的最短路径就称为单源赋权最短路径。

Djkstra算法:

解决单源赋权最短路径问题的一般方法叫作Djkstra算法(迪杰斯特拉算法)。迪杰斯特拉算法是一种贪婪算法,它是分阶段进行的,在每个阶段都认为选择是最好的。迪杰斯特拉算法只能解决非负权值的最短路径问题。

在该方法中,图中的每个顶点保留与无权最短路径中同样的信息。known表示是否该顶点是否已知,d表示该顶点到输入顶点的距离,path表示引起该顶点距离变化的最后一个顶点,在顶点v的邻接表中,除了要保存邻接顶点的编号外,还要额外保存该顶点到其邻接顶点的边的权值dvw。

迪杰斯特拉算法正是基于这些信息来实现的。首先我们选择d最小的未知顶点v,因为这是我们在这个阶段所能做的最好选择,而且事实上,从输入顶点s开始,首先找到其邻接顶点并改变邻接顶点的d,并标记s为已知,接下来从d最小的未知顶点v开始,显然这个未知顶点的最小距离就是d,因为从s开始,不论从任何其他顶点回到v,都需要经过(s,v)以外的边,显然这会导致距离大于d,所以每当我们选择到d最小的未知顶点时,它的最短距离就是d,并且我们可以将它标记为已知。接下来,我们考察v的未知邻接顶点。当顶点v的距离d加上其与邻接顶点之间边的权值dvw小于邻接顶点当前的距离d时,就更新邻接顶点的d,并改变邻接顶点的path,重复上述操作直到所有顶点都变为已知,就解决了单源赋权最短路径问题。

以下图为例,选择输入顶点sv_{1},通过表格来说明Djkstra算法的具体过程,首先将图中顶点(除v_{1}外)的距离d都设置为inf(无穷),显然v_{1}的距离d为0.

vKnowndpath
v_{1}00-1
v_{2}0inf-1
v_{3}0inf-1
v_{4}0inf-1
v_{5}0inf-1
v_{6}0inf-1
v_{7}0inf-1

下一步,将v_{1}标记为已知(用 * 表示),并处理v_{1}的邻接顶点:

 

vKnowndpath
v_{1}10-1
v_{2}02v_{1}
v_{3}0inf-1
v_{4}01v_{1}
v_{5}0inf-1
v_{6}0inf-1
v_{7}0inf-1

 下一步,找到d最小的未知顶点v_{4},做和v_{1}相同的处理:

 

vKnowndpath
v_{1}10-1
v_{2}02v_{1}
v_{3}03v_{4}
v_{4}11v_{1}
v_{5}03v_{4}
v_{6}09v_{4}
v_{7}05v_{4}

接下来处理v_{2},在处理邻接顶点时,v_{4}已知,不做处理,处理v_{5}时,因为v_{5}当前的d=3,而v_{2}的d=2,再加上dvw=10,所以v_{5}的d保持不变,path也保持不变。

vKnowndpath
v_{1}10-1
v_{2}12v_{1}
v_{3}03v_{4}
v_{4}11v_{1}
v_{5}03v_{4}
v_{6}09v_{4}
v_{7}05v_{4}

接下来处理v_{3},同v_{2}的处理方法一样,显然v_{6}的d和path需要更新:

vKnowndpath
v_{1}10-1
v_{2}12v_{1}
v_{3}13v_{4}
v_{4}11v_{1}
v_{5}03v_{4}
v_{6}08v_{3}
v_{7}05v_{4}

下一步,处理v_{5}

 

vKnowndpath
v_{1}10-1
v_{2}12v_{1}
v_{3}13v_{4}
v_{4}11v_{1}
v_{5}13v_{4}
v_{6}08v_{3}
v_{7}05v_{4}

下一步处理v_{7}

 

vKnowndpath
v_{1}10-1
v_{2}12v_{1}
v_{3}13v_{4}
v_{4}11v_{1}
v_{5}13v_{4}
v_{6}08v_{7}
v_{7}15v_{4}

最后处理v_{6}

vKnowndpath
v_{1}10-1
v_{2}12v_{1}
v_{3}13v_{4}
v_{4}11v_{1}
v_{5}13v_{4}
v_{6}16v_{7}
v_{7}15v_{4}

到此就得到了所有顶点的赋权最短路径。

代码实现:

 

void Djkstra(g* p) {
	int min, dmin;
	for (;;) {
		dmin = inf;
		int i;
		for (i = 0; i < 7; i++) {//找到d最小的未知顶点
			if (p->v[i]->known == 0 && p->v[i]->d < dmin) {
				dmin = p->v[i]->d;
				min = i;
			}
		}
		if (dmin == inf) {//dmin没有改变说明要么所有顶点都是已知,要么虽然有的顶点未知,但是从输入顶点出发不能到达,这两种情况都应该退出循环
			break;
		}
		p->v[min]->known = 1;
		l* tmp = p->v[min]->next;
		while (tmp != NULL) {//处理min顶点的邻接顶点
			if (p->v[tmp->val]->known == 0) {
				if (p->v[min]->d + tmp->dvw < p->v[tmp->val]->d) {
					p->v[tmp->val]->d = p->v[min]->d + tmp->dvw;
					p->v[tmp->val]->path = min;
				}
			}
			tmp = tmp->next;
		}
	}
}

显然,Djkstra算法包含两层for循环,所以它的时间复杂度为O(|V|^2)

Djkstra算法能够处理没有负边的赋权最短路径问题,但是它并不能解决有负边的最短路径问题,这是因为Djkstra算法对已知的顶点不会再做处理,但是有负边时,已知的顶点有可能邻接于其之后处理的顶点,而从这个顶点返回已知顶点的路径更短,这个时候Djkstra算法就不能正确的更新d以及path。 

带有负值边的赋权最短路径:

一种处理具有负边图的办法是:给所有边都加上一个常数C,使得所有边都变为正值,这种方法看似可行,实际上那些具有较多边的路径的权重会大于那些较少边的路径,即使之前它们之间的关系不是这样。

另一种方法是:将赋权和无权的方法结合起来,但是舍弃掉Known这个信息。这种方法使用一个队列来存放将要处理的顶点,首先将s入队,当队列不为空时,队头顶点出队,然后对该顶点的邻接顶点的信息进行更新,并将更新过且不在队列中的顶点入队,重复操作直到队列为空。这个算法基于这样一个事实,如果存在负边,那么所有顶点当前的d都不一定是最小的,那么它们可能仍然需要被更新,所以当处理完当前顶点后,如果该顶点的邻接顶点信息被改变,那么该邻接顶点的邻接顶点信息也要被改变。

但是如果负值边指向的顶点能够到达图中的任何一个其他顶点(如图),那么这种方法就可能陷入死循环,这个时候就必须设置终止条件,这个条件可以是在任意顶点已经出队|V|+1次后。在图中,每个顶点的最小d实际上应该是负无穷(如果一直循环下去)。但如果将-10改为-2或是-1,那么这条边又会变得没有意义,因为经过这条边到达v_{2}并不会比v_{2}本来的d更小。实际上可以总结为,如果能通过负边减小d的顶点,就可以通过不断地经过负边来使它的d越来越小,而不能通过负边改变d的顶点,它们的信息也就与没有负边时相同。并且在现实生活中,负的权值是很少见的,我们一般处理的权值,比如价格、距离、时间等因素,都是非负的。

 使用队列的赋权最短路径算法:

void WeightedNegative(g* p) {
	q* pq = CreatQueue();//建立队列
	enqueue(pq, 0);//将输入顶点s入队
	p->v[0]->known = 1;//将该顶点标记为已在队列中
	while (!isempty(pq)) {//当队列不为空时
		int n = dequeue(pq);//出队
		p->v[n]->known = 0;//将出队顶点标记为不在队中
		if (p->v[n]->dequeuenum == 8)//循环结束条件
			break;
		p->v[n]->dequeuenum++;//出队后,出队次数+1
		l* tmp = p->v[n]->next;
		while (tmp != NULL) {//对出队顶点的邻接顶点更新,如果邻接顶点更新了就入队
			if (p->v[n]->d + tmp->dvw < p->v[tmp->val]->d) {
				p->v[tmp->val]->d = p->v[n]->d + tmp->dvw;
				p->v[tmp->val]->path = n;
				if (p->v[tmp->val]->known == 0) {
					enqueue(pq, tmp->val);
					p->v[tmp->val]->known = 1;
				}
			}
			tmp = tmp->next;
		}
	}
}

运行结果:

将循环结束条件改为 p->v[n]->dequeuenum == 80

将循环结束条件改为 p->v[n]->dequeuenum == 100000

将图中的-10改为-2,运行结果为:

 

可以看到此时的运行结果和没有负边的结果是相同的。 

图的建立和测试代码:

#define inf 99999999

//图
typedef struct list {//邻接表
	int val;
	int dvw;
	struct list* next;
}l;

typedef struct table {//图中顶点的信息
	int known;
	int d;
	int path;
	int dequeuenum;
	l* next;//指向邻接表的指针
}t;

typedef struct graph {//指向定点信息的指针
	t* v[7];
}g;

g* CreatGraph() {
	g* pg = (g*)malloc(sizeof(g));
	for (int i = 0; i < 7; i++) {
		t* p = (t*)malloc(sizeof(t));
		p->next = NULL;
		p->d = inf;
		p->known = 0;
		p->path = -1;
		p->dequeuenum = 0;
		pg->v[i] = p;
	}

	l* p = (l*)malloc(sizeof(l));
	p->val = 1;
	p->dvw = 2;
	p->next = pg->v[0]->next;
	pg->v[0]->next = p;
	p = (l*)malloc(sizeof(l));
	p->val = 3;
	p->dvw = 1;
	p->next = pg->v[0]->next;
	pg->v[0]->next = p;

	p = (l*)malloc(sizeof(l));
	p->val = 3;
	p->dvw = 3;
	p->next = pg->v[1]->next;
	pg->v[1]->next = p;
	/*p = (l*)malloc(sizeof(l));
	p->val = 4;
	p->dvw = 10;
	p->next = pg->v[1]->next;
	pg->v[1]->next = p;*/

	p = (l*)malloc(sizeof(l));
	p->val = 0;
	p->dvw = 4;
	p->next = pg->v[2]->next;
	pg->v[2]->next = p;
	p = (l*)malloc(sizeof(l));
	p->val = 5;
	p->dvw = 5;
	p->next = pg->v[2]->next;
	pg->v[2]->next = p;

	p = (l*)malloc(sizeof(l));
	p->val = 2;
	p->dvw = 2;
	p->next = pg->v[3]->next;
	pg->v[3]->next = p;
	p = (l*)malloc(sizeof(l));
	p->val = 4;
	p->dvw = 2;
	p->next = pg->v[3]->next;
	pg->v[3]->next = p;
	p = (l*)malloc(sizeof(l));
	p->val = 5;
	p->dvw = 8;
	p->next = pg->v[3]->next;
	pg->v[3]->next = p;
	p = (l*)malloc(sizeof(l));
	p->val = 6;
	p->dvw = 4;
	p->next = pg->v[3]->next;
	pg->v[3]->next = p;

	p = (l*)malloc(sizeof(l));
	p->val = 6;
	p->dvw = 6;
	p->next = pg->v[4]->next;
	pg->v[4]->next = p;
	p = (l*)malloc(sizeof(l));
	p->val = 1;
	p->dvw = -10;
	p->next = pg->v[4]->next;
	pg->v[4]->next = p;

	p = (l*)malloc(sizeof(l));
	p->val = 5;
	p->dvw = 1;
	p->next = pg->v[6]->next;
	pg->v[6]->next = p;

	return pg;
}

//队列
typedef struct queue {
	int arr[50];
	int front;
	int rear;
	int num;
}q;

int dequeue(q* p) {
	p->num--;
	return p->arr[p->front++ % 50];
}

void enqueue(q* p, int x) {
	p->num++;
	p->arr[(++p->rear) % 50] = x;
}

q* CreatQueue() {
	q* p = (q*)malloc(sizeof(q));
	p->front = 0;
	p->rear = -1;
	p->num = 0;
	return p;
}

int isempty(q* p) {
	return p->num == 0;
}

//打印函数
void print(g* p) {
	for (int i = 0; i < 7; i++) {
		printf("v%d     path = v%d     know = %d     distance = %d\n", i + 1, p->v[i]->path + 1, p->v[i]->known, p->v[i]->d);
	}
}

//测试函数
int main() {

	g* pg = CreatGraph();

	pg->v[0]->d = 0;

	WeightedNegative(pg);

	print(pg);

	return 0;
}

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值