【洛谷】 P1115 最大子段和(贪心)

本文介绍了如何使用贪心算法和动态规划解决最大子段和问题,通过前缀和优化空间复杂度,以及动态规划状态转移实现高效解题。文章通过实例解析算法思路,并给出了两种方法的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【洛谷】 P1115 最大子段和

问题描述

给出一段序列,选出其中连续且非空的一段使得这段和最大。

输入格式

第一行是一个正整数 N ( 0 < N < 200000 ) N(0<N<200000) N(0<N<200000),表示了序列的长度。
第二行包含 N N N 个绝对值不大于 10000 10000 10000 的整数 a i a_i ai,描述了这段序列。

输出格式
一个整数,为最大的子段和。子段的最小长度为1。
输入样例

7
2 -4 3 -1 2 -4 3

输出样例

4

样例说明

{ 2 , − 4 , 3 , − 1 , 2 , − 4 , 3 } \{2,−4,3,−1,2,−4,3\} {2,4,3,1,2,4,3} 中,最大的子段和为 4,该子段为 { 3 , − 1 , 2 } \{3,−1,2\} {3,1,2}




题解

一、前缀和求解

此题是一道贪心算法的题目。在寻找最大子段时,我们当然可以通过枚举来寻找,即通过两重循环一一枚举该序列的所有子序列,并分别求其和(这里又是一重循环)再寻找其中的最大值。因此暴力枚举方法的时间复杂度为 O ( n 3 ) O\left(n^3\right) O(n3)。这在题目给出的数据范围下,必定超时无疑。这时候,可能你会马上想到一种数据结构——前缀和(对此数据结构尚不清楚的,可查看我前面写的专栏 ☞ 传送门),它的存在可将子段和转化为前缀和相减的形式。但不幸的是,其也只能将上面思路中求每个子序列和的那重循环降至常数级。因此,采取这样的方法求解的时间复杂度为 O ( n 2 ) O\left(n^2\right) O(n2) ,依然不能拿到满分。

由于我们希望找到和最大的子序列,因此对于序列中的每个数而言,其被选中一定要带来正收益(此处体现为“是一个正数”)。所以,任何想要被加入其中的数都必须是正数。但是有一类情况:对于某些负数,其加入必定会使得当前的序列总和降低,但是它可能具有链接作用,即可能在这之后会有很大的正数,能弥补由于添加该负数而导致的临时的整个序列总和降低。对于这类数,我们肯定是允许其加入序列的。那要对甄别这种情况呢?这依然可以用前缀和!

首先要知道一件事,前缀和数组求子序列(假设序列区间为 [ i + 1 , j ] [i+1,j] [i+1,j] )和的公式为:
S u m [ i + 1 , j ] = ∑ k = i + 1 j a i = p r e f i x [ j ] − p r e f i x [ i ] Sum_{[i+1,j]}=\sum_{k=i+1}^ja_i=prefix[j]-prefix[i] Sum[i+1,j]=k=i+1jai=prefix[j]prefix[i]
因此对 prefix[ ] 而言,prefix[j] 和 prefix[i] 差距越大,就表示对应序列 [i+1,j] 的总和越大。下面用题目给出的数据进行举例:

{ 2 , − 4 , 3 , − 1 , 2 , − 4 , 3 } \{2, -4, 3, -1, 2, -4, 3\} {2,4,3,1,2,4,3}

首先构建关于此数列的前缀和序列如下(这里假设前构建的缀和数组为 prefix[ ],索引从 1 开始):

{ 2 , − 2 , 1 , 0 , 2 , − 2 , 1 } \{2, -2, 1, 0, 2, -2, 1\} {2,2,1,0,2,2,1}

接下来我们扫描这里面的最小值,可以得到 minGap = prefix[2]=-2,同时可得到最大值 maxGap = prefix[5]=2(注意,实际在代码里这个查找过程是按序执行的,第一次得到的最大的 prefix[1]=2 会被舍弃)。因此最终认为,原数组中具有最大子段和的序列区间为 [3,5] ,即 { 3 , − 1 , 2 } \{3,-1,2\} {3,1,2},其总和为 3 + ( − 1 ) + 2 = 4 3+(-1)+2=4 3+(1)+2=4

基于这样的思路,可写出以下代码(已 AC):

#include<bits/stdc++.h> 
using namespace std;

const int MAX = 2e+5;
int ary[MAX],prefix[MAX]; 

int main()
{
	int n; cin>>n;
	for(int i=1;i<=n;i++){
		// 输入原始序列 
		cin>>ary[i];
		
		// 构建前缀和数组
		prefix[i] = prefix[i-1] + ary[i];
	}
	
	// 查找最大子序列 
	int minGap = 0x7fffffff, maxSum = 0x80000000;
	for(int i=1;i<=n;i++) {
		// 得到索引 i 之前的最优决策点(即最小的前缀和) 
		minGap = min(minGap,prefix[i-1]);
		
		// 计算在当前最优决策下的子序列总和,并总是将最大值保存 
		maxSum = max(maxSum, prefix[i]-minGap);
	}
	
	// 输出最大子序列的总和
	cout<<maxSum<<endl; 
	
	return 0;
}


上面的代码多用了一个数组来保存原始序列,但是这个序列在用于计算前缀和数组后就再也没用过了,因此我们还能对以上代码的空间用量进行进行优化,于是可得到:

#include<bits/stdc++.h> 
using namespace std;

const int MAX = 2e+5;
int prefix[MAX]; 

int main()
{
	int n, num, minGap = 0x7fffffff, maxSum = 0x80000000;
	cin>>n;
	for(int i=1;i <=n; i++){
		// 输入原始序列中的数字 
		cin>>num;
		// 构建前缀和数组
		prefix[i] = prefix[i-1] + num;
		// 得到索引 i 之前的最优决策点(即最小的前缀和) 
		minGap = min(minGap,prefix[i-1]);
		// 计算在当前最优决策下的子序列总和,并总是将最大值保存 
		maxSum = max(maxSum, prefix[i]-minGap);
	}
	// 输出最大子序列的总和
	cout<<maxSum<<endl; 
	return 0;
}


二、动态规划求解

实际上这道题还能用动态规划的思想进行求解。

若设转移数组 d p [ i ] dp[i] dp[i] 表示“以序号 i i i 结尾的子数列中的最大连续子段和”,则对输入的整个序列( a r y [   ] ary[\ ] ary[ ])而言,每个 d p [ i ] dp[i] dp[i] 的最低取值即为 a r y [ i ] ary[i] ary[i]。此时,每个子序列都取第i个元素构成单元素序列。在这样的定义下,最终我们要求的就是 m a x i ∈ [ 1 , n ] d [ i ] max_{i∈[1,n]}d[i] maxi[1,n]d[i]

接下来讨论此模型的动态转移方程。由于我们每次更新 d p [ i ] dp[i] dp[i] 时, d p [ i − 1 ] dp[i-1] dp[i1] 都已经存储好了“以 i − 1 i-1 i1 结尾的最大连续子段和”,因此, d p [ i ] dp[i] dp[i] 要想取得“以 i i i 结尾的子数列中的最大连续子段和”就只需加上 d p [ i − 1 ] dp[i-1] dp[i1] 即可。但是,加上的 d p [ i − 1 ] dp[i-1] dp[i1] 必须大于0,否则这样的 “加上” 实际上会成为 “减少” 。所以该模型的动态转移方程即为(其中, a r y [   ] ary[\ ] ary[ ]为原序列数组, i i i为循环遍历指针):

if(dp[i-1] >= 0)
	dp[i] = ary[i]+dp[i-1];

注:在实际编码时,可直接令 d p [   ] = a r y [   ] dp[\ ]=ary[\ ] dp[ ]=ary[ ],则此时转移方程为: d p [ i ] = d p [ i ] + d p [ i − 1 ] dp[i] = dp[i]+dp[i-1] dp[i]=dp[i]+dp[i1]
接下来只需要遍历 d p [   ] dp[\ ] dp[ ]数组并取出其中的最大值即可。

下面给出利用动态规划求解本题的完整代码:

#include<bits/stdc++.h> 
using namespace std;

const int MAX = 2e5+5;
int dp[MAX];

int main( )
{
	// 录入数据 
	int n;cin>>n;
	for(int i=0;i<n;i++)
		cin>>dp[i];
	
	// 初始化结果 
	int ans = dp[0];
	
	// 状态转移
	for(int i=1;i<n;i++){
		if(dp[i-1] >= 0)
			dp[i] += dp[i-1];
		ans = max(ans, dp[i]);
	}
	
	// 输出结果
	cout<<ans<<endl; 
	
    return 0;
}


甲方:有没有更节约内存的解决办法?
我:***

下面来探寻这个问题的本质。

由于现在要求具有最大子段和的序列,那对该序列而言,其被选中的数只能是以下两种:

  1. 正数,直接带来正收益;
  2. 负数,但是其加入还不足以将前面积累的正数和给削减完(即加上当前这个负数该子序列的总和仍然为正),这时我们给它一个机会让他留,因为我很贪心,我想着可能后面会来一个大的正数,其足以弥补该负数带来的削弱(商人思维:舍不得孩子套不了狼)。

基于这样的思路,我们甚至连数组都不需要,仅用三个寄存器就能完成上面的算法。

  1. sum:用于存放 “以前输入的数据总和” ,一旦这个值低于 0 ,就说明前面的序列可以舍弃了,接下来需要重新计数;
  2. max:用于保存当前设定的子序列总和;
  3. now:用于接受程序当前的输入。

下面给出基于以上分析得到的完整代码。

#include<iostream>
using namespace std;

int main()
{
	// sum 用于记录前缀和,max 用于记录最大值,now 用于记录当前输入的值
	int n,sum,max,now;
	
	// 初始化:将输入序列的第一个作为sum
	cin>>n>>sum;
	
	// 初始化:将sum的值作为max的值
	max = sum;
	
	while(--n)
	{
		cin>>now;
		
		// 判断 sum 的正负以决定是否保留该序列(这一步体现了贪心的思想)
		sum = sum>0?sum:0; 

		// 无论怎样,都加上当前输入的值以对比max
		sum += now;	
		
		// 试图更新 max
		max=max>sum?max:sum;
	}
	
	cout<<max<<endl;
	return 0;
}

进阶题目:【蓝桥杯】 历届试题 最大子阵


END


<think>好的,用户想了解洛谷上练习二分查找的题目,我需要给出合适的推荐。首先,我得回忆一下洛谷的题库结构常见的二分题目。 用户可能刚开始学二分查找,所以应该从简单题开始。我记得P2249【深基13.例1】查找是个经典的二分题,适合入门。这道题直接考察二分查找的实现,用来找第一个出现的位置,能帮助理解二分的基本应用。 接下来,用户可能需要一些变形的题目,比如在有序数组中找特定值的位置。比如P1102 A-B数对,这题可以用二分或者哈希,但用二分的话可以练习如何统计满足条件的数对数量,属于稍微进阶的应用。 然后,可能需要考虑实际应用的问题,比如P1873砍树,这道题需要二分答案,找到最大的高度,属于典型的二分答案问题。这类题目可以帮助用户理解如何将问题转化为二分可解的形式。 另外,像P1678 烦恼的高考志愿,这题需要找到最接近的分数线,涉及到二分查找后的比较,能练习处理边界条件最接近值的情况。 还有P2440 木材加工,也是二分答案的题目,需要计算能否切割出指定数量的木材,适合进一步巩固二分答案的方法。 对于更高难度的题目,比如P1024 [NOIP2001 提高组] 一元三次方程求解,虽然涉及数值方法,但可以用二分来逼近解,适合提升应用能力。 此外,P1182 数列分 Section II P2678 跳石头都是不错的二分答案练习题,涉及到如何将问题转化为判定性问题,并检查条件是否满足。 在推荐时,需要按照难度排序,从基础到应用,再到变形难题。同时,要提醒用户注意二分的边界条件,比如左闭右开左闭右闭区间的处理,避免死循环。还要强调二分的前提是有序性,以及如何将问题转化为适合二分的形式,特别是二分答案类的问题。 可能用户对二分查找的理解还停留在数组查找层面,需要引导他们了解更广泛的应用场景,比如最大值最小化或最小值最大化的问题,这时候二分答案就很有用。此外,可以建议用户在做题时注意调试,通过输出中间值来检查二分的执行过程,帮助理解哪里出错了。 最后,总结这些题目,给出一个由易到难的顺序,并附上题号,方便用户查找。同时提醒练习时要理解每个步骤,避免死记硬背模板,这样才能灵活应用。</think>在洛谷上练习二分查找算法,建议按照以下顺序逐步提升难度,并注意掌握不同应用场景的变形: ### 一、基础入门 1. **P2249 【深基13.例1】查找** - 难度:普及- - 特点:标准二分查找模板题,要求找到第一个等于目标值的下标。 2. **P1102 A-B 数对** - 难度:普及- - 特点:需统计满足 `A - B = C` 的数对数量,可用二分优化查找过程。 --- ### 二、二分答案应用 3. **P1873 砍树** - 难度:普及/提高- - 特点:典型二分答案题,寻找最大伐木高度,满足总长度要求。 4. **P2440 木材加工** - 难度:普及/提高- - 特点:类似砍树,判断能否切割出指定数量的木材,练习二分边界处理。 --- ### 三、变形与进阶 5. **P1678 烦恼的高考志愿** - 难度:普及- - 特点:查找最接近的分数线,需处理二分后的相邻值比较。 6. **P1024 [NOIP2001 提高组] 一元三次方程求解** - 难度:普及/提高- - 特点:用二分法求方程的近似解,需注意精度控制。 --- ### 四、综合提升 7. **P1182 数列分 Section II** - 难度:普及/提高- - 特点:二分答案+贪心,寻找最大的最小值。 8. **P2678 跳石头** - 难度:普及+/提高 - 特点:NOIP真题,二分最短跳跃距离的最大值,需处理复杂条件判断。 --- ### ✨ 练习建议 1. **理解二分本质** - 二分核心是逐步缩小答案范围,需确保问题具有**单调性**(有序或可判定性)。 2. **注意边界条件** - 左闭右开 `[left, right)` 与左闭右闭 `[left, right]` 的处理差异,避免死循环。 3. **调试技巧** - 在循环中输出 `mid` 值,观察收敛过程,验证判断条件是否正确。 4. **拓展思考** - 遇到复杂问题时,先尝试将问题转化为二分可解的判定性问题(如“能否满足某个条件”)。 --- 📌 完成以上题目后,可尝试挑战更高难度的 **P4343 [SHOI2015] 自动刷题机** 或 **P3743 kotori的设备**,这些题目对二分与其他算法的结合能力有更高要求。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

theSerein

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值