时间趋势类数据可视化总结

前言

时间趋势类可视化图像主要用于展示数据随时间的变化情况,帮助用户快速理解数据的动态特征和趋势。以下是几种常见的时间趋势类图表的总结,包括它们的特点、应用场景以及使用 Python(Matplotlib、Seaborn、Plotly 等库)的实现过程及结果。

一、地平线图

特点
紧凑性:能够在有限的空间内展示大量的时间序列数据。
直观性:通过颜色和高度的变化,用户可以快速识别数据的波动趋势和异常点。
多层显示:数据被分割成多个层次,每一层代表一个范围,便于用户理解数据的分布。
应用场景
时间序列分析:适用于展示股票价格、温度变化、网站流量等随时间变化的数据。
仪表板设计:在有限的空间内展示多个时间序列数据,方便用户快速获取信息。

python实现

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import rcParams
 
# 设置中文字体
rcParams['font.sans-serif'] = ['SimHei']  # 使用黑体
rcParams['axes.unicode_minus'] = False  # 解决负号显示问题
 
# 生成示例数据
np.random.seed(42)
x = np.linspace(0, 10, 100)
data = np.sin(x * 2) * 10 + np.random.normal(0, 1, 100)
 
 
# 创建地平线图
def plot_horizon(x, data, bands=3, colors=('#B2182B', '#EF8A62', '#FDDBC7', '#D1E5F0', '#67A9CF', '#2166AC')):
    fig, ax = plt.subplots(figsize=(10, 4))
 
    # 计算每个带的高度
    band_height = (np.max(data) - np.min(data)) / bands
 
    # 绘制正负区域
    for i in range(bands):
        # 正数部分
        positive_data = np.where(data > 0, np.clip(data, i * band_height, (i + 1) * band_height) - i * band_height, 0)
        ax.fill_between(x, 0, positive_data,
                        color=colors[i % len(colors)],
                        alpha=0.8,
                        edgecolor='none')
 
        # 负数部分
        negative_data = np.where(data < 0, np.clip(data, -(i + 1) * band_height, -i * band_height) + i * band_height, 0)
        ax.fill_between(x, 0, negative_data,
                        color=colors[(i + bands) % len(colors)],
                        alpha=0.8,
                        edgecolor='none')
 
    # 设置坐标轴和标签
    ax.set_xlabel('时间', fontsize=12)
    ax.set_ylabel('数值强度', fontsize=12)
    ax.set_title('地平线图示例(3波段正负分离)', fontsize=14, pad=20)
    ax.grid(True, linestyle='--', alpha=0.6)
 
    # 隐藏y轴刻度
    ax.set_yticks([])
 
    plt.tight_layout()
    return fig
 
 
# 绘制图表
plot_horizon(x, data)
plt.show()

在这里插入图片描述


二、河流图

河流图(Sankey Diagram)是一种流向图,主要用于可视化流动的数量和方向,能够展示不同类别之间的关系及其变化。河流图通常用于表示能量、物质或资金的流动,具有直观且易于理解的特点。

特点
1.流动可视化:河流图通过流线的宽度表示流动的数量,宽度越大表示流动量越大。
2.动态展示:能够动态展示多个时间序列数据的变化趋势。
3.多维关系:能够同时展示多个维度的数据流动,便于分析复杂的关系。
4.交互性:许多实现方式支持交互,用户可以通过点击或悬停获取更多信息。

应用场景
能源流动分析(如电力、油气等)
财务流动分析(如收入、支出、投资等)
供应链管理(如原材料到成品的流动)
生态系统中的物质流动(如营养物质在生态系统中的流动)

python实现

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
 
# 生成示例数据
np.random.seed(0)
time = pd.date_range('20230101', periods=30)
data = pd.DataFrame(np.cumsum(np.random.randn(30, 3), axis=0), index=time, columns=['A', 'B', 'C'])
# 居中处理数据以生成对称河流图
data = data.sub(data.mean(axis=1), axis=0)
# 绘制河流图
plt.figure(figsize=(10, 6))
colors = ['skyblue', 'aquamarine', 'steelblue']
plt.stackplot(data.index, data.T, labels=data.columns, alpha=0.7, baseline='wiggle', colors=colors)
# 设置图表标题和坐标轴标签
plt.title('Streamgraph Example')
plt.xlabel('Time')
plt.ylabel('Value')
# 旋转x轴日期标签以便更好显示
plt.xticks(rotation=45)
# 显示图例
plt.legend(title='Categories', loc='upper right')
# 优化布局
plt.tight_layout()
# 显示图表
plt.show()

在这里插入图片描述
使用Matplotlib和Pandas库创建一个三个类别(A、B、C)在30天时间范围内变化趋势的河流图(Streamgraph)。河流图适合展示多个时间序列的相对变化,同时保持整体趋势的清晰对比。


三、瀑布图

特点
展示累积效果
显示正向和负向贡献
连接起点和终点

应用场景
财务分析(利润构成)
项目进度跟踪
预算变化分析

python实现

from pyecharts.charts import ThemeRiver
import pyecharts.options as opts
import pandas as pd
# 导入数据
data = pd.read_csv('river_data.csv')
# print(data)
# print(data)
#数据格式
# 系列名称,用于 tooltip 的显示,legend 的图例筛选。
#    series_name: Sequence,
    # 系列数据项
#    data: types.Sequence[types.Union[opts.ThemeRiverItem, dict]],
data_list = []
# 封装数据
for i in zip(data['date'],data['num'],data['series']):
    data_list.append(list(i))
# print(data_list)
series = ['分支1','分支2','分支3','分支4','分支5','分支6']
# 绘制,设置类型为时间
wc = ThemeRiver(init_opts=opts.InitOpts(height='600px'))\
    .add(series_name=series, data=data_list, singleaxis_opts=opts.SingleAxisOpts(type_='time'))\
    .render()

在这里插入图片描述

四、烛型图

特点
详细信息:能够展示每个时间单位内的详细价格信息,包括开盘价、收盘价、最高价和最低价。
趋势判断:通过蜡烛的颜色和形状,用户可以快速判断市场的趋势和情绪。
技术分析:是金融领域中常用的技术分析工具,能够帮助投资者做出决策。

应用场景
金融市场分析:适用于展示股票、期货、外汇等金融产品的价格变化。
技术分析:用于识别市场趋势和交易信号。

python实现

import plotly.graph_objects as go
import pandas as pd
# 生成示例数据
df = pd.DataFrame({
    'Date': pd.date_range(start='2023-01-01', periods=100, freq='D'),
    'Open': np.random.randint(100, 200, 100),
    'High': np.random.randint(200, 300, 100),
    'Low': np.random.randint(50, 150, 100),
    'Close': np.random.randint(150, 250, 100)
})
# 创建烛形图
fig = go.Figure(data=[go.Candlestick(x=df['Date'],
                open=df['Open'],
                high=df['High'],
                low=df['Low'],
                close=df['Close'])])
# 更新布局
fig.update_layout(title='烛形图示例', xaxis_title='日期', yaxis_title='价格')
fig.show()

在这里插入图片描述


五、日历热力图

特点
1.直观展示时间序列数据的分布和趋势,适合长期数据(如年/月/周)的可视化。
2.颜色编码清晰,便于快速识别高/低值、周期性规律或异常日期。
3.紧凑布局,节省空间,同时保留完整的日期信息。
4.数据点过多时可能显得拥挤,难以精确对比相邻日期的差异。
5.依赖颜色映射,色盲用户可能难以区分。
6.不适用于非时间序列数据或离散类别数据

应用场景

每日活动跟踪
网站访问量分析
温度变化模式

python实现

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import calmap
# 生成示例数据
dates = pd.date_range('2023-01-01', '2023-12-31')
values = np.random.rand(len(dates))
events = pd.Series(values, index=dates)
plt.figure(figsize=(12, 6))
calmap.yearplot(events, year=2023, cmap='YlGn')
plt.title('Calendar Heatmap')
plt.tight_layout()
plt.show()

在这里插入图片描述


总结

图表类型特点适用场景优点缺点
地平线图分层显示数据,颜色区正负高密度时间序列多序列对比有限空间展示节省垂直空间适合大数据量解读需要适应颜色选择关键
河流图堆叠面积图变体基线居中形成流动效果多类别时间趋势(流量来源、产品占比)展示整体模式美观性强精确值读取困难类别不宜过多
瀑布图显示累积过程区分正负贡献财务分析 预算变化 项目进度直观显示增减强调关键节点数据复杂度有限类别不宜过多
烛型图显示OHLC价格(开盘/最高/最低/收盘)金融市场分析价格波动研究信息密度高,行业标准需要金融知识,单变量专用
日历热力图按日历布局颜色表示数值每日活动模式(访问量、打卡记录)显示周期性直观醒目仅适合日粒度数据
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值