关于梯度下降算法的矢量化过程

本文通过解析Andrew Ng的机器学习课程中的梯度下降算法,详细介绍了如何将梯度下降的更新规则进行矢量化处理。文章通过实例解释了如何将参数向量、设计矩阵、预测值与真实值等结合,最终形成矢量化公式,以便在Matlab/Octave中高效计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这几天一直在看Angdrew Ng 的机器学习视频, 里面关于梯度下降(Gradient descent)算法的矢量化(vectorization)过程听得云里雾里的,好在经过后面的编程作业,总算是大致弄清楚了矢量化的过程。

Gradient descent:

θj:=θjα1mi=1m(hθ(x(i))y(i))x(i)j


θ0:=θ0α1mi=1m(hθ(x(i))y(i))x(i)0

θ1:=θ1α1mi=1m(hθ(x(i))y(i))x(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值