机器学习
文章平均质量分 92
The_Only_God
yang
展开
-
聚类基本概念及常见聚类算法和EM算法
聚类:发现数据中分组聚集的结构,根据数据中样本与样本之间的距离或相似度,依据类内样本距离小(相似度大)、类间样本距离大(相似度小)将样本划分为若干组/类/簇。簇集合的其他区别簇的类型距离度量函数应满足条件:非负性:dist(xi,yj)≥0dist(x_i,y_j)\ge0dist(xi,yj)≥0不可分的同一性:dist(xi,yj)=0ifxi=xjdist(x_i,y_j)=0\quad if\quad x_i=x_jdist(xi,yj)=0ifxi=xj对称性:dist(xi,yj)=原创 2022-12-01 10:12:11 · 1283 阅读 · 1 评论 -
支持向量机
支持向量机0. 由来1. 核心思想2. 硬间隔支持向量机2.1 间隔最大化2.2 转换为拉格朗日对偶问题3. 软间隔支持向量机4. 泛函基础4.1 度量(距离)空间4.2 线性空间4.3 赋范空间4.4 巴拿赫(Banach)空间4.5 内积空间4.6 希尔伯特(Hibert)空间5. 核支持向量机5.1 正定核5.2 常用核函数5.2.1 多项式核函数5.2.2 高斯核函数6. SMO算法Cortes与Vapnik 提出线性支持向量机. Boser Guyon Vapnik 又引入核技巧,提出非线性支持向原创 2022-11-23 21:05:17 · 956 阅读 · 0 评论 -
《机器学习实战》学习——k近邻算法
文章目录算法原理算法模板实例:约会网站匹配推荐题目描述导入数据分析数据数据归一化测试算法进行预测实例:手写字体识别题目描述数据预处理测试算法 算法原理 k-近邻算法是一种监督学习算法,是一种“懒惰学习”(在训练阶段仅把数据保存起来,待收到测试样本后再进行处理)。 原理:给定测试样本,基于某种距离度量找出训练集中与其最靠近的k各训练样本,然后基于这k个邻居来进行预测。 分类任务——“投票法” 回归任务——“平均法” 一般步骤: 收集数据->准备数据->分析数据->测试算法->使用算法原创 2020-12-30 14:43:44 · 451 阅读 · 1 评论