第二章、动态规划算法(2.6.3-2.6.3.3)------单序列子序列问题(2)

本文详细介绍了动态规划算法在解决最大连续子序列和问题上的应用,包括问题定义、状态转移方程的确定以及代码实现。通过状态转移方程`dp[i] = max(dp[i-1] + A[i], A[i])`,求得所有状态的最大连续子序列和,最终找到最大值。同时,文章讨论了如何优化代码以提高效率,并提及如何求最大和连续子序列的个数。" 127446149,16005537,车载客流统计计数器:智能交通的新助力,"['公共交通', '客流分析', '智能交通', '视频监控', '安全预警']
摘要由CSDN通过智能技术生成

目录
2.6.3最大连续子序列和(最大子数组和)问题
2.6.3.1问题
2.6.3.2确定动态规则(DP、状态转移方程)、初始值
(1)直接相关状态
(2)当前状态值的确定
(3)动态规则(DP、状态转移方程)
(4)初始值
2.6.3.3动态规划算法代码实现
(1)完整代码
(2)程序速度优化
(3)最大和连续子序列(最大和子数组)
(4)最大和连续子序列的个数(数量)

2.6.3最大连续子序列和(最大子数组和)问题

2.6.3.1问题

        最大连续子序列和(m

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

thefg

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值