
深度学习的数学
深度学习的数学
thefist11
难以忘记编程路上领导和好友的细致指导,所以必须努力!(真诚希望大家多多指导!)
展开
-
深度学习的数学 (6)误差反向传播法必需的链式法则
1. 神经网络和复合函数 y = f(u), u = g(x) 嵌套结构的函数 f(g(x)) 称为 f(u) 和 g(x) 的复合函数。 2. 链式法则,复合函数求导公式 2.1 三个函数的复合函数的链式法则 2.2. 多变量函数的链式法则 变量 z 为 u、 v 的函数,如果 u、 v 分别为 x、 y 的函数,则 z 为 x、 y的函数 z 关于 x 求导时,先对 u、 v 求导,然后与 z 的相应导数相乘,最后将乘积加起来 在三个以上的变量的情况下也同样成立 ...原创 2022-03-31 00:45:55 · 1072 阅读 · 0 评论 -
深度学习的数学 (5)偏导数
1. 多变量函数 有两个以上的自变量的函数 2. 偏导数( partial derivative):指明对哪一个变量进行求导,关于某个特定变量的导数。 关于 x 的偏导数: y 的偏导数: => 单变量函数 y = f (x) 在点 x 处取得最小值的必要条件是导函数在该点取值 0。 3. 拉格朗日乘数法 这个方法首先引入参数 λ,创建下面的函数 L 再加上 可得 ...原创 2021-05-01 22:19:20 · 455 阅读 · 0 评论 -
深度学习的数学 (4)张量、矩阵、导数
1. 张量 tension 2. 矩阵 Hadamard 乘积 转置矩阵( transposed matrix):矩阵 A 的,表示为: 3. 导数 y =f (x) 的导函数 f ‘(x): 当 ∆x 无限接近 0 时“(∆x 的式子 )”接近的值,f’(x) 表示图像切线的斜率 导数公式: 导数符号 3.1导数的线性性 和的导数为导数的和,常数倍的导数为导数的常数倍 3.2 分数函数的导数和 Sigmoid 函数的导数 Sigmoid 函数 σ(x)的导数 假设f(x)为原创 2021-05-01 22:10:16 · 342 阅读 · 0 评论 -
深度学习的数学 (3)基础函数
1. 一次函数 a 称为斜率, b 称为截距 2.二次函数 的几个图像为: 3.正态分布( normal distribution) 常数 µ 称为期望值( 平均值), σ 称为标准差 标准正态分布:期望值 µ 为 0、标准差 σ 为 1 的正态分布的概率密度函数 正态分布随机数:按照正态分布产生的随机数 4.数列 有穷数列,首项,末项 通项公式: 将数列的第 n 项用一个关于 n 的式子表示出来 eg. an = 2n 递归定义:已知首项 a1 以及相邻两项 an、 an + 1 的关.原创 2021-05-01 22:02:24 · 185 阅读 · 0 评论 -
深度学习的数学(2)恶魔神经
1. 问题:建立一个神经网络,用来识别通过 4× 3 像素的图像读取的手写数字 0 和 1。学习数据是 64 张图像,其中像素是单色二值。 手写数字 0 的图像 2. 将恶魔工作翻译成网络语言 3. 相关概念 神经网络的参数确定方法分为有监督学习和无监督学习 监督学习是指,为了确定神经网络的权重和偏置,事先给予数据,这些数据称为学习数据。根据给定的学习数据确定权重和偏置,称为学习。 最优化 计算神经网络得出的预测值与正解的误差,确定使得误差总和达到最小的权重和偏置。 代价函数原创 2021-05-01 21:55:55 · 339 阅读 · 0 评论 -
深度学习的数学 (1)基本概念
1. 从生物学的神经单元里模拟而来 2. 权重 3. 单位阶跃函数 4. 激活函数 -> 附注:a为激活函数 4.1Sigmoid 函数 输出值接近 1 表示兴奋度高,接近 0 则表示兴奋度低 ->将-θ改为b,b偏置( bias) 5.向量内积 ( w1, w2, w3, b)( x1, x2, x3, 1) 神经网络: 将神经单元的多个输入 x1, x2, …, xn 整理为加权输入 z。 神经单元通过激活函数 a(z),根据加权输入 z 输出 y。 6.阶层原创 2020-12-02 16:31:41 · 231 阅读 · 0 评论