数据结构与算法基础
排序
-
将一组杂乱无章的数据按一定规律顺次排列起来
-
如果参加排序的数据结点包含多个数据域,那么排列往往是针对其中某个域而言的。
排序方法的分类
-
按数据存储介质:内部排序和外部排序
-
内部排序:数据量不大,数据在内存,无需内外存交换数据
-
外部排序:数据量较大,数据在外存
外部排序时,要将数据分批调入内存来排序,中间结果还要及时放入外存,显然外部排序要复杂得多
-
-
按比较器个数:串行排序和并行排序
- 串行排序:单处理机(同一时刻比较一对元素)
- 并行排序:多处理机(同一时刻比较多对元素)
-
按主要操作:比较排序和基数排序
-
比较排序:用比较的方法
插入排序、交换排序、选择排序、归并排序
-
基数排序:不比较元素的大小,仅仅根据数据本身的取值确定其有序位置。
-
-
按辅助空间:原地排序和非原地排序
-
原地排序:辅助空间用量为O(1)的排序方法
(所占的辅助存储空间与参加排序的数据量大小无关)
-
非原地排序:辅助空间用量超过O(1)的排序方法
-
-
按稳定性:稳定排序和非稳定排序
- 稳定排序:能够使任何数值相等的元素,排序以后相对次序不变
- 非稳定性排序:不是稳定排序的方法。
-
按自然性:自然排序和非自然排序
- 自然排序:输入数据越有序,排序的速度越快的排序方法
- 非自然排序:不是自然排序的方法
存储结构:
#define MAXSIZE 20 //设记录不超过20个
typedef int KeyType; //设关键字为整型量(int型)
Typedef struct{//定义每个记录(数据元素)的结构
KeyType key;//关键字
InfoType otherinfo;//其他数据域
}RedType;//Record Type
Typedef struct{//定义顺序表的结构
RedType r[MAXSIZE+1];//存储顺序表的向量
//r[0]一般作哨兵或缓冲区
int length;//顺序表的长度
}
插入排序
- 每步将一个待排序的对象,按其关键码的大小,插入到前面已经排好序的一组对象的适当位置上,知道对象全部插入为止。
基本操作
- 在有序序列中插入一个元素,保持序列有序,有序长度不断增加
- 起初,a[0]是长度为1的子序列。然后,逐一将a[1]至a[n-1]插入到有序子序列中。
- 插入a[i]前,数组a的**前半段(a[0]a[i-1])是有序段**,后半段(a[i]a[n-1])是停留于输入次序的“无序段”。
- 插入a[i]使a[0]~a[i-1]有序,也就是要为a[i]找到有序位置j(0<=j<=i),将a[i]插入在a[j]的位置上。
分类
-
直接插入排序
使用顺序查找法查找插入位置
- 复制插入元素
- 记录后移,查找插入位置
- 插入到正确位置
使用哨兵法来实现直接插入排序
-
复制为哨兵
L.r[0] = L.r[i];
-
记录后移,查找输入位置
for(j=i-1;L.r[0].key<L.r[j].key;–j)
L.r[j+1] = L.r[j];
-
插入到正确位置
L.r[j+1] = L.r[0];
void InsertSort(SqList &L)
{
int i,j;
for(i = 2;i <= L.length;++i)
{
if(L.r[i].key < L.r[i-1].key)//若“<”,需要将L.r[i]插入有序子表
{
L.r[0] = L.r[i];//复制为哨兵
for(j=i-1;L.r[0].key<L.r[j].key;--j)
{
L.r[j+1]=L.r[j];//记录后移
}
L.r[j+1] = L.r[0];//插入到正确位置
}
}
}
-
二分插入排序
类似折半查找法
void BinserSort(SqList &L) { for(i=2;i<=L.length;++i)//依次插入第二~第n个元素 { L.r[0] = L.r[i];//当前插入元素存到“哨兵”位置 low = 1;high = i-1;//采用二分查找法查找插入位置 while(low<=high) { mid = (low + high)/2; if(L.r[0].key < L.r[mid].key) { high = mid -1; } else { low = mid+1; } }//循环技术,high+1则为插入位置 for(j=i-1;j>=high+1;--j) { L.r[j+1] = L.r[j];//移动元素 } L.r[high+1] = L.r[0];//插入到正确位置 } }
- 折半插入排序的对象移动次数与直接插入排序相同,依赖于对象的初始排列
- 减少了比较次数,但没有减少移动次数
- 平均性能优于直接插入排序
- 折半插入排序的对象移动次数与直接插入排序相同,依赖于对象的初始排列
-
希尔排序
-
将整个待排序记录序列分割成若干子序列,分别进行直接插入排序,待整个序列中的记录“基本有序”时,再对全体记录进行依次直接插入排序。
-
希尔排序算法的特点:
- 缩小增量
- 多遍插入排序
-
先定义一个增量序列
-
对每个Dk进行“Dk-间隔”插入排序(k=M,M-1,…1)
-
希尔排序特点:
- 一次移动,移动位置较大,跳跃式地接近排序后的最终位置
- 最后一次只需要少量移动
- 增量序列必须是递减的,最后一个必须是1
- 只能改良序列应该是互质的
-
void ShellSort(Sqlist &L,int dlta[],int t) { //按增量序列dlta[0..t-1]对顺序表L作希尔排序。 for(k=0;k<t;++k) { ShellInsert(L,dlta[k]);//一趟增量为dlta[k]d的插入排序 } } void ShellInsert(SqList &L,int dk) {//对顺序表L进行一趟增量为dk的Shell排序,dk为步长因子 for(i=dk+1;i<=L.length;++i) { if(r[i].key < r[i-dk].key) { r[0] = r[i]; for(j = i-dk;j>0&&(r[0].key<r[j].key);j = j-dk) { r[j+dk] = r[j]; } r[j+dk] = r[0]; } } }
-
交换排序
-
两两比较,如果发生逆序则交换,直到所有记录都排好序为止。
-
冒泡排序
void bubble_sort(SqList &L)//冒泡排序算法 { int m,i,j; RedType x;//交换时临时存储 for(m = 1;m < n-1;m++) { for(j=1;j<=n-m;j++) { if(L.r[j].key>L.r[j+1].key)//发生逆转 { x = L.r[j]; L.r[j] = L.r[j+1]; L.r[j+1] = x; } } } }
-
快速排序
- 基本思想
- 任取一个元素(如:第一个)为中心(pivot:枢纽,中心点)
- 所有比它小的元素一律前放,比它大的元素一律后放,形成两个子表
- 对各自表重新选择中心元素并依此规则调整
- 直到每个子表的元素只剩一个
- 基本思想
void QSort(SqList &L,int low,int high)//对顺序表L快速排序
{
if(low<high)//长度大于1
{
pivotloc = Partition(L,low,high);
//将L.r[low..high]一分为二,pivotloc为枢轴元素排好序的位置
QSort(L,low,pivotloc-1);//对低子表递归排序
QSort(L,pivortloc+1,high);//对高子表递归排序
}
}
int Partition(SqList &L,int low,int high)
{
L.r[0] = L.r[low];
pivotkey = L.r[low].key;
while(low<high)
{
while(low<high&&L.r[high].key>=pivotkey)
{
--high;
}
L.r[low] = L.r[high];
while(low<high&&.r[low].key<=pivotkey)
{
++low;
}
L.r[high] = L.r[low];
}
L.r[low] = L.r[0];
return low;
}
简单选择排序
-
在待排序的数据中选出最大(小)的元素放在其最终的位置
-
基本操作
- 首先通过n-1次关键字比较,从n个记录中找出关键字最小的记录,将它与第一个记录交换
- 再通过n-2次比较,从剩余的n-1个记录中找出关键字次小的记录,将它与第二个记录交换
- 重复上述操作,共进行n-1趟排序后,排序结束
void SelectSort(SqList &K)
{
for(i = 1;i<L.length;++i)
{
k=i;
for(j=i+1;j<=L.length;j++)
{
if(L.r[j].key<L.r[k].key)
{
k = j;//记录最小值位置
}
}
if(k!=i)
{//交换
tmp=L.r[i];
L,r[i] = L.r[k];
L.r[k] = tmp;
}
}
}
- 堆排序
- ai<=a2i以及ai<=a2i+1,称该序列为小根堆
- 从堆的定义可以看出,堆实质是满足如下性质的完全二叉树:二叉树中任一非子夜结点均小于(大于)它的孩子结点
- 若再输出对丁的最小值(最大值)后,使得剩余n-1个元素的序列重又建成一个堆,则得到n个元素的次小值(次大值)…如此反复,便能得到一个有序序列,这个过程称之为堆排序。(堆顶的元素被取走了)
- 小根堆:
- 输出堆顶元素之后,以堆中最后一个元素替代之
- 然后将根结点值与左、右子树的根结点值进行比较,并与其中小者进行交换;
- 重复上述操作,直至叶子结点,将得到新的堆,称这个从堆顶至叶子的调整过程为“筛选”
void HeapSort(elem R[])
{
//对R[1]到R[n]进行堆排序
int i;
for(i=n/2;i>=1;i--)
{
HeapAdjust(R,i,n);//建初始堆
}
for(i = n;i>1;i--)//进行n-1趟排序
{
Swap(R[1],R[i]);//根与最后一个元素交换
HeapAdjust(R,i,i-1);//对R[1]到R[i-1]重新建堆
}
}
归并排序
- 基本思想:将两个或两个个以上的有序子序列“归并”为一个有序序列
基数排序
-
基本思想:分配+收集
-
也叫桶排序或箱排序