算法基础-排序

数据结构与算法基础

排序

  • 将一组杂乱无章的数据按一定规律顺次排列起来

  • 如果参加排序的数据结点包含多个数据域,那么排列往往是针对其中某个域而言的。

排序方法的分类

  • 按数据存储介质:内部排序和外部排序

    • 内部排序:数据量不大,数据在内存,无需内外存交换数据

    • 外部排序:数据量较大,数据在外存

      外部排序时,要将数据分批调入内存来排序,中间结果还要及时放入外存,显然外部排序要复杂得多

  • 按比较器个数:串行排序和并行排序

    • 串行排序:单处理机(同一时刻比较一对元素)
    • 并行排序:多处理机(同一时刻比较多对元素)
  • 按主要操作:比较排序和基数排序

    • 比较排序:用比较的方法

      插入排序、交换排序、选择排序、归并排序

    • 基数排序:不比较元素的大小,仅仅根据数据本身的取值确定其有序位置。

  • 按辅助空间:原地排序和非原地排序

    • 原地排序:辅助空间用量为O(1)的排序方法

      (所占的辅助存储空间与参加排序的数据量大小无关)

    • 非原地排序:辅助空间用量超过O(1)的排序方法

  • 按稳定性:稳定排序和非稳定排序

    • 稳定排序:能够使任何数值相等的元素,排序以后相对次序不变
    • 非稳定性排序:不是稳定排序的方法。
  • 按自然性:自然排序和非自然排序

    • 自然排序:输入数据越有序,排序的速度越快的排序方法
    • 非自然排序:不是自然排序的方法

存储结构:

#define MAXSIZE 20  //设记录不超过20个
typedef int KeyType; //设关键字为整型量(int型)

Typedef struct{//定义每个记录(数据元素)的结构
	KeyType key;//关键字
	InfoType otherinfo;//其他数据域
}RedType;//Record Type

Typedef struct{//定义顺序表的结构
    RedType r[MAXSIZE+1];//存储顺序表的向量
    //r[0]一般作哨兵或缓冲区
    int length;//顺序表的长度
}

插入排序

  • 每步将一个待排序的对象,按其关键码的大小,插入到前面已经排好序的一组对象的适当位置上,知道对象全部插入为止。

基本操作

  • 在有序序列中插入一个元素,保持序列有序,有序长度不断增加
  • 起初,a[0]是长度为1的子序列。然后,逐一将a[1]至a[n-1]插入到有序子序列中。
  • 插入a[i]前,数组a的**前半段(a[0]a[i-1])是有序段**,后半段(a[i]a[n-1])是停留于输入次序的“无序段”。
  • 插入a[i]使a[0]~a[i-1]有序,也就是要为a[i]找到有序位置j(0<=j<=i),将a[i]插入在a[j]的位置上。

分类

  • 直接插入排序

    使用顺序查找法查找插入位置

    • 复制插入元素
    • 记录后移,查找插入位置
    • 插入到正确位置

    使用哨兵法来实现直接插入排序

    • 复制为哨兵

      L.r[0] = L.r[i];

    • 记录后移,查找输入位置

      for(j=i-1;L.r[0].key<L.r[j].key;–j)

      ​ L.r[j+1] = L.r[j];

    • 插入到正确位置

      L.r[j+1] = L.r[0];

void InsertSort(SqList &L)
{
	int i,j;
	for(i = 2;i <= L.length;++i)
	{
		if(L.r[i].key < L.r[i-1].key)//若“<”,需要将L.r[i]插入有序子表
		{
			L.r[0] = L.r[i];//复制为哨兵
			for(j=i-1;L.r[0].key<L.r[j].key;--j)
			{
				L.r[j+1]=L.r[j];//记录后移
			}
			L.r[j+1] = L.r[0];//插入到正确位置
		}
			
	}
}
  • 二分插入排序

    类似折半查找法

    void BinserSort(SqList &L)
    {
    	for(i=2;i<=L.length;++i)//依次插入第二~第n个元素
    	{
    		L.r[0] = L.r[i];//当前插入元素存到“哨兵”位置
    		low = 1;high = i-1;//采用二分查找法查找插入位置
            while(low<=high)
            {
                mid = (low + high)/2;
                if(L.r[0].key < L.r[mid].key)
                {
                    high = mid -1;
                }
                else
                {
                    low = mid+1;
                }
            }//循环技术,high+1则为插入位置
            for(j=i-1;j>=high+1;--j)
            {
                L.r[j+1] = L.r[j];//移动元素
            }
            L.r[high+1] = L.r[0];//插入到正确位置
    	}
    }
    
    • 折半插入排序的对象移动次数与直接插入排序相同,依赖于对象的初始排列
      • 减少了比较次数,但没有减少移动次数
      • 平均性能优于直接插入排序
  • 希尔排序

    • 将整个待排序记录序列分割成若干子序列,分别进行直接插入排序,待整个序列中的记录“基本有序”时,再对全体记录进行依次直接插入排序。

    • 希尔排序算法的特点:

      • 缩小增量
      • 多遍插入排序
    • 先定义一个增量序列

    • 对每个Dk进行“Dk-间隔”插入排序(k=M,M-1,…1)

    • 希尔排序特点:

      • 一次移动,移动位置较大,跳跃式地接近排序后的最终位置
      • 最后一次只需要少量移动
      • 增量序列必须是递减的,最后一个必须是1
      • 只能改良序列应该是互质的
    • void ShellSort(Sqlist &L,int dlta[],int t)
      {
      	//按增量序列dlta[0..t-1]对顺序表L作希尔排序。
      	for(k=0;k<t;++k)
      	{
      		ShellInsert(L,dlta[k]);//一趟增量为dlta[k]d的插入排序
      	}
      }
      
      void ShellInsert(SqList &L,int dk)
      {//对顺序表L进行一趟增量为dk的Shell排序,dk为步长因子
          for(i=dk+1;i<=L.length;++i)
          {
              if(r[i].key < r[i-dk].key)
              {
                  r[0] = r[i];
                  for(j = i-dk;j>0&&(r[0].key<r[j].key);j = j-dk)
                  {
                      r[j+dk] = r[j];
                  }
                  r[j+dk] = r[0];
              }
          }
      }
      

交换排序

  • 两两比较,如果发生逆序则交换,直到所有记录都排好序为止。

  • 冒泡排序

    void bubble_sort(SqList &L)//冒泡排序算法
    {
    	int m,i,j;
        RedType x;//交换时临时存储
        for(m = 1;m < n-1;m++)
        {
            for(j=1;j<=n-m;j++)
            {
                if(L.r[j].key>L.r[j+1].key)//发生逆转
                {
                    x = L.r[j];
                    L.r[j] = L.r[j+1];
                    L.r[j+1] = x;
                }
            }
        }
    }
    
  • 快速排序

    • 基本思想
      • 任取一个元素(如:第一个)为中心(pivot:枢纽,中心点)
      • 所有比它小的元素一律前放,比它大的元素一律后放,形成两个子表
      • 对各自表重新选择中心元素并依此规则调整
      • 直到每个子表的元素只剩一个
void QSort(SqList &L,int low,int high)//对顺序表L快速排序
{
	if(low<high)//长度大于1
    {
        pivotloc = Partition(L,low,high);
        //将L.r[low..high]一分为二,pivotloc为枢轴元素排好序的位置
        QSort(L,low,pivotloc-1);//对低子表递归排序
        QSort(L,pivortloc+1,high);//对高子表递归排序
    }
}

int Partition(SqList &L,int low,int high)
{
    L.r[0] = L.r[low];
    pivotkey = L.r[low].key;
    while(low<high)
    {
        while(low<high&&L.r[high].key>=pivotkey)
        {
            --high;
        }
        L.r[low] = L.r[high];
        while(low<high&&.r[low].key<=pivotkey)
        {
            ++low;
        }
         L.r[high] = L.r[low];
    }
    L.r[low] = L.r[0];
    return low;
}

简单选择排序

  • 在待排序的数据中选出最大(小)的元素放在其最终的位置

  • 基本操作

    • 首先通过n-1次关键字比较,从n个记录中找出关键字最小的记录,将它与第一个记录交换
    • 再通过n-2次比较,从剩余的n-1个记录中找出关键字次小的记录,将它与第二个记录交换
    • 重复上述操作,共进行n-1趟排序后,排序结束
void SelectSort(SqList &K)
{
	for(i = 1;i<L.length;++i)
	{
		k=i;
		for(j=i+1;j<=L.length;j++)
		{
			if(L.r[j].key<L.r[k].key)
			{
				k = j;//记录最小值位置
			}
		}
		if(k!=i)
		{//交换
			tmp=L.r[i];
			L,r[i] = L.r[k];
			L.r[k] = tmp;
		}
	}
}
  • 堆排序
    • ai<=a2i以及ai<=a2i+1,称该序列为小根堆
    • 从堆的定义可以看出,堆实质是满足如下性质的完全二叉树:二叉树中任一非子夜结点均小于(大于)它的孩子结点
    • 若再输出对丁的最小值(最大值)后,使得剩余n-1个元素的序列重又建成一个堆,则得到n个元素的次小值(次大值)…如此反复,便能得到一个有序序列,这个过程称之为堆排序。(堆顶的元素被取走了)
    • 小根堆:
      • 输出堆顶元素之后,以堆中最后一个元素替代之
      • 然后将根结点值与左、右子树的根结点值进行比较,并与其中小者进行交换;
      • 重复上述操作,直至叶子结点,将得到新的堆,称这个从堆顶至叶子的调整过程为“筛选”
void HeapSort(elem R[])
{
    //对R[1]到R[n]进行堆排序
    int i;
    for(i=n/2;i>=1;i--)
    {
        HeapAdjust(R,i,n);//建初始堆
    }
    for(i = n;i>1;i--)//进行n-1趟排序
    {
        Swap(R[1],R[i]);//根与最后一个元素交换
        HeapAdjust(R,i,i-1);//对R[1]到R[i-1]重新建堆
    }
}

归并排序

  • 基本思想:将两个或两个个以上的有序子序列“归并”为一个有序序列

基数排序

  • 基本思想:分配+收集

  • 也叫桶排序或箱排序

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值