hdu1575 二分+矩阵求幂

矩阵M^k,求幂,如果k是偶数,M^k=M^(k/2)*M*(k/2)%mod; 如果k是奇数,M^k=M^(k/2)*M*(k/2)*M;采用二进制扫描

 

 

#include<iostream>
#include<stdio.h>
#include<string>
#include<string.h>
#define N 11
#define mod 9973
using namespace std;
struct Matrix
{
    int mat[N][N];

};
int n;
Matrix Mat_Mul(Matrix M1,Matrix M2) { Matrix c; for(int i=0;i<n;i++) { for(int j=0;j<n;j++) { c.mat[i][j]=0; for(int k=0;k<n;k++) { c.mat[i][j]+=(M1.mat[i][k]*M2.mat[k][j])%mod; } c.mat[i][j]=c.mat[i][j]%mod; } } return c; } Matrix Bi_Search(Matrix M,int k) { Matrix E; memset(E.mat,0,sizeof(E.mat)); for(int i=0;i<n;i++) { E.mat[i][i]=1; } while(k) { if(k&1) E=Mat_Mul(E,M); M=Mat_Mul(M,M); k>>=1; } return E; } int main() { int t; cin>>t; while(t--) { int k; Matrix M; int Tr=0; cin>>n>>k; for(int i=0;i<n;i++) { for(int j=0;j<n;j++) { cin>>M.mat[i][j]; } } M=Bi_Search(M,k); for(int i=0;i<n;i++) { Tr+= M.mat[i][i]; } cout<<Tr%mod<<endl; } return 0 ; }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值