【题目描述】
自从得到上次的教训后,John的上课态度认真多了,也变得更爱动脑筋了。今天他又学习了一个新的知识:关于 xk 的位数。
如果x大于0小于l,那么位数=1+小数部分×k,
如果x≥l,那么位数=trunc(ln(x)/ln(10)×k)+1+小数部分×k。
根据这些函数知识,他学会了求xk的位数了。但他又想到了另外一个问题,如果已知位数N,能不能求出使得 xk 达到或超过N位数字的最小正整数x是多少?
【题解】
这个题看着麻烦,实际上就是问你一个最大的x使得x^x的位数小于n。而且求位数的公式告诉我们了。check()就能够很好的写出来了。值得注意的是,ln()在c语言中是log(),包含在math.h里面。
代码如下:
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
const int N=250000000;//这才是真正的上界
using namespace std;
int n;
int ans;
int main()
{
scanf("%d",&n);
long long lf=1,rg=N;
while(lf<=rg)//注意是<=
{
long long mid=(lf+rg)>>1;
if(trunc(log(mid)/log(10)*mid)+1>=n)rg=mid-1,ans=mid;
else lf=mid+1;
}
printf("%d",ans);
return 0;
}