题目描述
给出1-n的两个排列P1和P2,求它们的最长公共子序列。
输入输出格式
输入格式:
第一行是一个数n,
接下来两行,每行为n个数,为自然数1-n的一个排列。
输出格式:
一个数,即最长公共子序列的长度
输入输出样例
输入样例#1:
5
3 2 1 4 5
1 2 3 4 5
输出样例#1:
3
说明
【数据规模】
对于50%的数据,n≤1000
对于100%的数据,n≤100000
解题报告
我们知道,最长上升子序列的求法是:
if(a[i]>a[j])f[i]=max(f[j])+1
这里我们用
flag[b[i]]
表示b[i]这个数在a数组中出现的位置。那么就有:
if(flag[b[i]]>flag[b[j]])f[i]=max(f[j])+1
我们令
b[i]=flag[b[i]]
,那么就转化成了求b数组的最长上升子序列的问题。而最朴素的最长上升子序列(拦截导弹)求法是
Θ(N2)
的,显然过不了这道题。而这道题的
Θ(N×logN2)
求法很多,我这里就用了单调栈的优化方法。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=100000;
int n,len;
int a[N+5],b[N+5],flag[N+5],sta[N+5];
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d",&a[i]),flag[a[i]]=i;
for(int i=1;i<=n;i++)scanf("%d",&b[i]),b[i]=flag[b[i]];
for(int i=1;i<=n;i++)
{
if(b[i]>sta[len])sta[++len]=b[i];
else
{
int lf=1,rg=len;
while(lf<=rg)
{
int mid=(lf+rg)>>1;
if(sta[mid]<b[i])lf=mid+1;
if(sta[mid]>b[i])rg=mid-1;
}
sta[lf]=b[i];
}
}
printf("%d\n",len);
return 0;
}