LuoguP2680/UOJ150[NOIP2015] 运输计划 解题报告【二分答案+树上操作(LCA)+树上差分】

题目背景
公元2044年,人类进入了宇宙纪元。
题目描述
L国有 n 个星球,还有n1条双向航道,每条航道建立在两个星球之间,这 n1 条航道连通了L国的所有星球。
小P掌管一家物流公司,该公司有很多个运输计划,每个运输计划形如:有一艘物流飞船需要从 ui 号星球沿最快的宇航路径飞行到 vi 号星球去。显然,飞船驶过一条航道 是需要时间的,对于航道 j ,任意飞船驶过它所花费的时间为tj,并且任意两艘飞船之 间不会产生任何干扰。
为了鼓励科技创新,L国国王同意小P的物流公司参与L国的航道建设,即允许小P把某一条航道改造成虫洞,飞船驶过虫洞不消耗时间。
在虫洞的建设完成前小P的物流公司就预接了 m 个运输计划。在虫洞建设完成后, 这m个运输计划会同时开始,所有飞船一起出发。当这 m 个运输计划都完成时,小P的物流公司的阶段性工作就完成了。
如果小P可以自由选择将哪一条航道改造成虫洞,试求出小P的物流公司完成阶段性工作所需要的最短时间是多少?
输入输出格式
输入格式:
输入文件名为 transport.in。
第一行包括两个正整数n m ,表示 L 国中星球的数量及小P公司预接的运输计划的数量,星球从1 n 编号。
接下来 n1 行描述航道的建设情况,其中第 i 行包含三个整数ai, bi ti ,表示第i 条双向航道修建在 ai bi 两个星球之间,任意飞船驶过它所花费的时间为 ti
接下来 m 行描述运输计划的情况,其中第j行包含两个正整数 uj vj ,表示第 j 个运输计划是从 uj号星球飞往 vj 号星球。
输出格式:
输出共1行,包含1个整数,表示小P的物流公司完成阶段性工作所需要的最短时间。
输入输出样例
输入样例#1:
6 3
1 2 3
1 6 4
3 1 7
4 3 6
3 5 5
3 6
2 5
4 5
输出样例#1:
11
说明
所有测试数据的范围和特点如下表所示

解题报告
题意就是在一棵树上,给定m个起点和终点,找一条边,把它的边权变为0,使得这m条路的最大值最小。
既然明确提到了“最大值最小”,考虑二分答案,二分路径的最大值,问题就在check上。我们假设有k条边小于二分出来的mid值,在这k条边上差分,具体的讲,就是在起点、终点上+1,在LCA上-2,计算每一个点的权值。对于点权为k的点,我们记录其到父亲之间连的边的最值vmax,最后用m条路径中的最大值w减去vmax,返回w-vmax<=mid。
具体实现上有一些细节问题:

  • 我们可以预处理出每一条路径的长度(边权和: dis[u]+dis[v]2dis[LCA(u,v)] )、LCA,把他们按长度从大到小排序。
  • 二分的边界应该是 [0,p[1].w]

总的来说,这道NOIP2015的题现在看起来也不是特别难,但是公认NOIP2015是NOIP近年来难度增加的一个转折点。现在回过头来看这个转折点上较难的题,还是有点意思。
代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=300000,P=20;
struct edge
{
    int v,w,next;
}ed[2*N+5];
struct path
{
    int u,v,w,lca;
    friend bool operator <(const path &s,const path &r){return s.w>r.w;}
}p[N+5];
int n,m,k,vmax;
int head[N+5],num;
int dep[N+5],anc[N+5][P+1],dis[N+5],mark[N+5];
void build(int u,int v,int w)
{
    ed[++num].v=v;
    ed[num].w=w;
    ed[num].next=head[u];
    head[u]=num;
}
void dfs_pre(int u,int f)
{
    anc[u][0]=f;
    for (int p=1;p<=P;p++)
    anc[u][p]=anc[anc[u][p-1]][p-1];
    for (int i=head[u];i!=-1;i=ed[i].next)
    {
        int v=ed[i].v;
        if (v==f) continue;
        dep[v]=dep[u]+1;
        dis[v]=dis[u]+ed[i].w;
        dfs_pre(v,u);
    }
}
int LCA(int u,int v)
{
    if (dep[v]>dep[u]) swap(u,v);
    int t=dep[u]-dep[v];
    for (int p=0;t;t>>=1,p++)
    if (t&1) u=anc[u][p];
    if (u==v)return u;
    for(int p=P;p>=0;p--) 
    if (anc[u][p]!=anc[v][p]) u=anc[u][p],v=anc[v][p];
    return anc[u][0];
}
void dfs(int u,int f)
{
    for (int i=head[u];i!=-1;i=ed[i].next)
    {
        int v=ed[i].v;
        if(v==f)continue;
        dfs(v,u);
        mark[u]+=mark[v];
    }
    if(mark[u]==k)vmax=max(vmax,dis[u]-dis[f]);
}
bool check(int mid)
{
    k=0,vmax=0;
    memset(mark,0,sizeof(mark));
    while(p[++k].w>mid&&k<=m)
    {
        int u=p[k].u,v=p[k].v,lca=p[k].lca;
        mark[u]++,mark[v]++,mark[lca]-=2;
    }
    k--;
    dfs(1,0);
    return p[1].w-vmax<=mid;
}
int main()
{
    memset(head,-1,sizeof(head));
    scanf("%d%d",&n,&m);
    for(int i=1;i<n;i++)
    {
        int u,v,w;
        scanf("%d%d%d",&u,&v,&w);
        build(u,v,w),build(v,u,w);
    }
    dep[1]=1;
    dfs_pre(1,0);
    for(int i=1;i<=m;i++)
    {
        int u,v;
        scanf("%d%d",&u,&v);
        p[i].u=u,p[i].v=v,p[i].lca=LCA(u,v),p[i].w=dis[u]+dis[v]-2*dis[p[i].lca];
    }
    sort(p+1,p+1+m);
    int lf=0,rg=p[1].w;
    while(lf+1<rg)
    {
        int mid=(lf+rg)>>1;
        if(check(mid))rg=mid;
        else lf=mid;
    }
    printf("%d",rg);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值