class Solution
{
public:
int uniquePaths(int m, int n)
{
if(m==1||n==1) return 1;
vector<vector<int>> dp(m,vector<int>(n,0));
for(int i=0;i<m;i++) dp[i][0]=1;
for(int j=0;j<n;j++) dp[0][j]=1;
for(int i=1;i<m;i++){
for(int j=1;j<n;j++){
dp[i][j]=dp[i][j-1]+dp[i-1][j];
}
}
return dp[m-1][n-1];
}
};
照葫芦画瓢尝试自己写了一下,结果还是忽略了很多情况。
我们要先把第一行和第一列给初始化为0才行。
然后每一个格子的方法数就等于他的上面的格子和左边的格子的方法数的和,因为只有这两个办法能走到这个格子。
题目链接:63. 不同路径 II - 力扣(LeetCode)
class Solution
{
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid)
{
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
if(obstacleGrid[0][0]==1||obstacleGrid[m-1][n-1]==1) return 0;
vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0;i < m;i++) {
dp[i][0] = 1;
if (obstacleGrid[i][0] == 1) {
dp[i][0] = 0;
break;
}
}
for (int j = 0;j < n;j++) {
dp[0][j] = 1;
if (obstacleGrid[0][j ] == 1) {
dp[0][j] = 0;
break;
}
}
for (int i = 1;i < m;i++) {
for (int j = 1;j < n;j++) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
if (obstacleGrid[i][j] == 1) dp[i][j] = 0;
}
}
return dp[m - 1][n - 1];
}
};
自己缝缝补补写出来的代码,没考虑的细节有很多,都是慢慢补上。
障碍物能出现在起点和终点这我是没想到的。
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) //如果在起点或终点出现了障碍,直接返回0
return 0;
vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if (obstacleGrid[i][j] == 1) continue;
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
};
相比之下解析的代码就很明了,不但短,而且也少做一点步骤。