https://www.cs.usfca.edu/~galles/visualization/Algorithms.html
红黑树
优缺点:相当于是一个二分查找,但是当数据量多的时候,层级会非常多,所以不适合io级别的操作,数据库这种使用红黑树是不合适的;适合内存操作,比如hashMap(jdk1.8之后链表长度大于8转为红黑树)、treeSet等
B树
优缺点:对比红黑树,B树增加了节点的内部元素(Max. Degree可设置,以上设置的时3,最多3个分支,就是内部2个元素可分成了3段-前中后),因此层级得到了很大程度的降低,可以考虑做数据库的存储,但是其有一个缺点,就是全量数据都保存在节点上,这样当节点大小固定时,一个节点存储的数据量并不多,依然可能导致树高度剧增;
B+树
优缺点:
B+树在B树的基础上做了改进
- 1、他的节点上并不存储全量数据,所有的全量数据都放到叶子节点上
- 2、叶子结点数据之间通过双向链表链接,方便范围检索
相对于B树,有着更明显适用于数据库组件存储结构的特性,非叶子结点只存储检索关键字,大大提高了单个非叶子结点的数据量,从而进一步压缩树的高度,大大提高检索性能
跳表
跳表和B+树一样,全量数据都是放在最下层;
跳表相对于B+树的缺点:
- 层级很高,所以不适合io级别的操作
因此存放同样量级的数据,B+树的高度比跳表的要少,如果放在mysql数据库上来说,就是磁盘IO次数更少,因此B+树查询更快。
优点:
- 实现简单
- 不需要旋转平衡,因此增删操作较快
B+树是多叉平衡搜索树,扇出高,只需要3层左右就能存放2kw左右的数据,同样情况下跳表则需要24层左右,假设层高对应磁盘IO,那么B+树的读性能会比跳表要好,因此mysql选了B+树做索引。
redis的读写全在内存里进行操作,不涉及磁盘IO,同时跳表实现简单,相比B+树、AVL树、少了旋转树结构的开销,因此redis使用跳表来实现ZSET,而不是树结构。
存储引擎RocksDB内部使用了跳表,对比使用B+树的innodb,虽然写性能更好,但读性能属实差了些。在读多写少的场景下,B+树依旧YYDS。