IOS 7 SDK Multitasking 多任务

本文探讨了iOS多任务机制的演进,特别是在iOS7中引入的后台API,包括后台获取、静默推送及后台传输服务。这些API如何帮助开发者在节省资源的同时提升用户体验。

昨天和今天看了一个blog 和这里介绍的IOS的多任务,

然后自己仔细品味了一番,有一些收货,这边顺便记录,总结和分享一下。

iOS7以前的Multitasking,其实是个伪多任务,一般的App不能在后台执行自己的代码,只有下面这几种任务可以在注册服务之后后台运行。

  • 后台完成某些花费时间的特定任务
  • 后台播放音乐等
  • 位置服务
  • IP电话(VoIP)
  • Newsstand
Background Audio,VoIP属于不后台会死的类型;Location Services是地点服务,由系统统一管理;Newsstand是苹果自家应用,定时更新。这些都是早就有,没变化。

在IOS 7 中,后台API主要给开发者提供了下面几个功能:

  • Background Fetch(后台获取
  • Remote Notifications(静默推送
  • Background Transfer Service(后台传输
Background Fetch:在系统认为合适的时候激活应用,具体什么时候合适,开发者不可知,使用者不可控,由系统智能判断,适合获取及时性不强的信息。这个智能体现在系统会根据用户启动应用的频率和时间以及当前的网络和电量情况来分配每个应用的获取频率和时间,数据刷新是统一的,即系统可以在一个进程内获取多个应用所需的数据而不是一个应用一个进程(类似统一的推送机制,都是为了省电)。

Remote Notifications:由统一推送通知激活后台,支持silent notification,适合实时类强的应用,有频率限制(每小时几次)。

Background Transfer Service:可以由应用直接激活的无限制后台,权限大,但是只限于下载上传类服务,只会在 WiFi 环境下才进行传输。但是,想要实现后台传输,就必须使用iOS7的新的网络连接的类,NSURLSession。这是iOS7中引入用以替代陈旧的NSURLConnection的类。

内容概要:本文介绍了基于贝叶斯优化的CNN-LSTM混合神经网络在时间序列预测中的应用,并提供了完整的Matlab代码实现。该模型结合了卷积神经网络(CNN)在特征提取方面的优势与长短期记忆网络(LSTM)在处理时序依赖问题上的强大能力,形成一种高效的混合预测架构。通过贝叶斯优化算法自动调参,提升了模型的预测精度与泛化能力,适用于风电、光伏、负荷、交通流等多种复杂非线性系统的预测任务。文中还展示了模型训练流程、参数优化机制及实际预测效果分析,突出其在科研与工程应用中的实用性。; 适合人群:具备一定机器学习基基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)础和Matlab编程经验的高校研究生、科研人员及从事预测建模的工程技术人员,尤其适合关注深度学习与智能优化算法结合应用的研究者。; 使用场景及目标:①解决各类时间序列预测问题,如能源出力预测、电力负荷预测、环境数据预测等;②学习如何将CNN-LSTM模型与贝叶斯优化相结合,提升模型性能;③掌握Matlab环境下深度学习模型搭建与超参数自动优化的技术路线。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注贝叶斯优化模块与混合神经网络结构的设计逻辑,通过调整数据集和参数加深对模型工作机制的理解,同时可将其框架迁移至其他预测场景中验证效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值