操作 1 可以用线段树随便维护,操作 2 则看起来不好直接处理。
我们将满足 b [ i ] = 1 b[i]=1 b[i]=1 的 a [ i ] a[i] a[i] 称为“可用的”。考虑三角形边长的性质,如果不存在这样的三元组,说明对区间内可用的 a [ i ] a[i] a[i] 升序排序后,均满足 a [ j ] + a [ j + 1 ] ≤ a [ j + 2 ] a[j]+a[j+1]\le a[j+2] a[j]+a[j+1]≤a[j+2]。显然排序后的数组每一项都不会小于斐波那契数列对应位置的值,而斐波那契数列的增长速度是非常快的,打表可以发现第 26 26 26 项就已经超出值域了。因此如果可用的 a [ i ] a[i] a[i] 数量超过 26 26 26,就一定有解。这个数量可以直接用线段树维护 b [ i ] b[i] b[i] 得到。如果数量不超过 26 26 26,直接在线段树上暴力找,复杂度不会超过 O ( s log n ) O(s\log n) O(slogn)( s s s 为可用的 a [ i ] a[i] a[i] 的个数),然后排序暴力检测就好了。
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int inf = 0x3f3f3f3f;
const int maxn = 1e5 + 5;
namespace sgt{
int tag[maxn << 2], cnt[maxn << 2];
void push_up(int p) {
cnt[p] = cnt[p << 1] + cnt[p << 1 | 1];
}
void build(int p, int l, int r, int* b) {
if (l == r) {
tag[p] = b[l];
cnt[p] = tag[p];
return;
}
int mid = l + r >> 1;
build(p << 1, l, mid, b);
build(p << 1 | 1, mid + 1, r, b);
push_up(p);
}
void push_down(int p, int l, int r) {
if (!tag[p]) return;
tag[p << 1] = !tag[p << 1];
tag[p << 1 | 1] = !tag[p << 1 | 1];
int mid = l + r >> 1;
cnt[p << 1] = mid - l + 1 - cnt[p << 1];
cnt[p << 1 | 1] = r - mid - cnt[p << 1 | 1];
tag[p] = 0;
}
void modify(int p, int x, int y, int l, int r) {
if (x <= l && r <= y) {
tag[p] = !tag[p];
cnt[p] = r - l + 1 - cnt[p];
return;
}
push_down(p, l, r);
int mid = l + r >> 1;
if (x <= mid) modify(p << 1, x, y, l, mid);
if (mid < y) modify(p << 1 | 1, x, y, mid + 1, r);
push_up(p);
}
int query(int p, int x, int y, int l, int r) {
if (x <= l && r <= y) {
return cnt[p];
}
push_down(p, l, r);
int mid = l + r >> 1, ans = 0;
if (x <= mid) ans += query(p << 1, x, y, l, mid);
if (mid < y) ans += query(p << 1 | 1, x, y, mid + 1, r);
push_up(p);
return ans;
}
void fuck(int p, int x, int y, int l, int r, vector<int>& v, int* a) {
if (l == r) {
if (tag[p]) v.push_back(a[l]);
return;
}
push_down(p, l, r);
int mid = l + r >> 1;
if (x <= mid && cnt[p << 1]) fuck(p << 1, x, y, l, mid, v, a);
if (mid < y && cnt[p << 1 | 1]) fuck(p << 1 | 1, x, y, mid + 1, r, v, a);
push_up(p);
}
};
int a[maxn], b[maxn];
void solve() {
int n, m;
cin >> n >> m;
for (int i = 1; i <= n; ++i)
cin >> a[i];
for (int i = 1; i <= n; ++i)
cin >> b[i];
sgt::build(1, 1, n, b);
const int mx = 27; // f[26] = 121393
while (m--) {
int op, l, r;
cin >> op >> l >> r;
if (op == 1) {
sgt::modify(1, l, r, 1, n);
} else {
int cnt = sgt::query(1, l, r, 1, n);
if (cnt <= 2) {
cout << "NO\n";
continue;
}
if (cnt >= mx) {
cout << "YES\n";
continue;
}
vector<int> tmp;
sgt::fuck(1, l, r, 1, n, tmp, a);
sort(tmp.begin(), tmp.end());
bool ok = 0;
for (int i = 2; i < tmp.size(); ++i) {
if (tmp[i - 2] + tmp[i - 1] > tmp[i]) {
ok = 1;
break;
}
}
cout << (ok ? "YES\n" : "NO\n");
}
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int T = 1;
// cin >> T;
while (T--) {
solve();
}
return 0;
}