thesby的专栏

专注于机器学习

CRF图像分割简介

这里主要是讲Conditional Random Fields(CRF)用于pixel-wise的图像标记(其实就是图像分割)。CRF经常用于 pixel-wise的label 预测。当把像素的label作为形成马尔科夫场随机变量且能够获得全局观测时,CRF便可以对这些label进行建模。这种全局...

2016-03-24 10:53:36

阅读数:8690

评论数:2

在win10 64 bit上安装theano

在windows10上安装theano,步骤如下: 1、准备工作。先安装Anaconda 64位。然后运行conda install mingw libpython2、先安装pycuda,可以去官网上下载最新版本的。1)解压后,用命令行进入目录。 2)运行 python configure.py...

2016-03-23 01:50:43

阅读数:1846

评论数:0

深度卷积网络CNN与图像语义分割

说好的要笔耕不缀,这开始一边实习一边找工作,还摊上了自己的一点私事困扰,这几个月的东西都没来得及总结一下。这就来记录一下关于CNN、Caffe、Image Sematic Segmentation相关的工作,由于公司技术保密的问题,很多东西没办法和大家详说只能抱歉了。在5月份前,我也是一个DL和C...

2016-03-21 16:13:30

阅读数:1389

评论数:0

机器学习实战教程(第二章 机器学习基本理论)

简单分类训练数据样本包含输入向量以及对应的目标向量的应用被称作有监督学习,例如MNIST手写识别。如果训练样本仅有输入向量,而没有目标向量,则称为是无监督学习。若一个输入样本的目标是将其映射到有限个离散标签中的一个,则称其为分类问题;若一个样本的目标是将其映射到一个连续区间,则称其为回归问题。增强...

2016-03-15 09:43:07

阅读数:491

评论数:0

Caffe + cuda7.5 + VS2013 + windows10

先直接上编译通过后的结果吧,https://yunpan.cn/cYBjHCwnpRNNX 访问密码 3da5这个caffe-windows是使用Caffe官网上推荐的一个版本,在这里可以下载到。里面也有安装的方法。不过很多人说编译通不过,所以可以直接下载上面链接的里的代码,已经编译好了,可以直...

2016-03-13 22:08:54

阅读数:1715

评论数:2

如何解读Caffe源码

如何解读Caffe源码导读Caffe是现在非常流行的深度学习库,能够提供高效的深度学习训练。该库是用C++编写,能够使用CUDA调用GPU进行加速。但是caffe内置的工具不一定能够满足用户的所有需求,所以阅读源码并理解它,是很有必要的。 这篇博文不是想把Caffe的所有函数都讲一遍,因为Caf...

2016-03-13 21:42:09

阅读数:4339

评论数:0

caffe*** Aborted at 1457505270 (unix time) try "date -d @1457505270" if you are using GNU date ***

在自己建立新的caffe层时,出现错误:*** Aborted at 1457505270 (unix time) try "date -d @1457505270" if you are using GNU date ***这个十分怪异的!在BLVC的论坛上也没找到解决办法。...

2016-03-13 20:44:44

阅读数:9750

评论数:14

Ubuntu14.04上深度学习Caffe库安装指南(CUDA7.5 + opencv3.1)

Ubuntu14.04 + CUDA7.5 + Opencv 3.1安装 Caffe教程

2016-03-13 20:10:32

阅读数:2985

评论数:0

Numpy 基础教程

声明:本文转载自http://blog.csdn.net/lsjseu/article/details/20359201?utm_source=tuicool&utm_medium=referral 先决条件 在阅读这个教程之前,你多少需要知道点python。如果你想从新回忆下...

2016-03-13 16:55:56

阅读数:513

评论数:0

机器学习实战教程(第一章 准备工作)

第一章 准备工作1.1、编程环境搭建本教程采用的编程语言为python,推荐使用Anaconda,这样可以不用自己安装各种库。要知道,现在在windows安装python的库时,经常出现安装失败。安装了Anaconda后,应该是已经有了numpy 、scipy、matplotlib、sklearn...

2016-03-13 16:51:43

阅读数:671

评论数:0

数据归一化和两种常用的归一化方法

数据归一化和两种常用的归一化方法 声明:本文转载自http://www.cnblogs.com/chaosimple/archive/2013/07/31/3227271.html 数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单...

2016-03-13 16:48:33

阅读数:953

评论数:0

机器学习中的相似性

机器学习中的相似性 本文转载自http://blog.csdn.net/pi9nc/article/details/9068359   在做分类时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”...

2016-03-13 16:37:47

阅读数:702

评论数:0

R语言实战--持续更新

R语言实战一、基础数据结构篇向量构建向量构建向量的方法是使用c(),参数使用方法:c(..., recursive = FALSE)使用方法:cells <- c(1:5, 10.5, "next") cells2 <- c(cells)第一行是把这些值存入一个向量...

2016-03-13 14:48:44

阅读数:498

评论数:0

CTEX安装必须注意 系统变量 path 被覆盖

大家写中文论文时比较喜欢用CTEX,但是该软件安装必须小心!

2016-03-10 21:59:09

阅读数:6369

评论数:3

如何在caffe中自定义网络层

如何在caffe中自定义网络层尽管Caffe已经为用户提供了相当多的可用的层,但是面对各种各样的深度学习应用,这些层是远远不够的,为此,我们可能需要定义自己的层来达到特定的功能。一般情况下,如果仅仅需要对某个层进行少量的修改,可以直接修改源码中对应的层,然后重新编译。这种方法好处就是不需要去建立新...

2016-03-07 20:55:31

阅读数:4514

评论数:0

[转载]caffe学习日记

声明:本文转载自summer rain的文章,出于想学习caffe的目的把全文都转载过来了。感谢summer rain的精彩教程。首先,caffe是个啥? 一个深度学习的框架,C++编写的。用户可独立于代码自定义神经网络,按需调整。可通过CUDA和GPU运算极大提高运算速度,尤其是对图片的处理方...

2016-03-03 21:22:23

阅读数:1452

评论数:0

python caffe libcaffe.so.1.0.0-rc3: cannot open shared object file

使用caffe的python接口时,很多人都会遇到如下问题:from ._caffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, \ ImportError: libcaffe.so.1.0.0-rc3: cannot open sh...

2016-03-03 20:37:38

阅读数:13975

评论数:2

提示
确定要删除当前文章?
取消 删除
关闭
关闭