爬楼梯问题

该博客讨论了经典的爬楼梯问题,将其与斐波那契数列联系起来,并提出了两种解题方法:递归和动态规划。通过动态规划优化,减少了时间复杂度到O(n)和空间复杂度到O(1),强调了只保留最终结果的重要性。
摘要由CSDN通过智能技术生成

题目描述:假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

经典爬楼梯问题,小二,关于这个问题你怎么理解啊?
解题思路:假设你现在要去爬5层楼梯,那么你的前一级楼梯就会有两种情况,一种是4级,另外一种是3级,那么我们就可以这样考虑这个问题,你将你到达3级和4级楼梯的方法数加起来就是你到达5级楼梯的方法,用数学公式可以表达为f(5) = f(4) + f(3),看见这个我们就可以想到斐波那契问题,但是如果采用递归的方法,在楼梯数很大的时候就会超出时间限制,时间复杂度会变得很大,因此我们采用动态规划的思路来完成,代码如下:

int[] dp = new int[n+1];

        dp[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值