Educational Codeforces Round 122E. Spanning Tree Queries

给定一个连接的加权无向图,由 n 个顶点和 m 个边组成。

你被问到关于它的 k 个问题。每个查询由一个整数 x 组成。对于每个查询,您可以在图中选择一个生成树。令其边的权重为 w1,w2,…,wn−1。生成树的代价是 ∑i=|wi−x| (权重和 x 之间的绝对差之和)。查询的答案是生成树的最低成本。

查询以压缩格式给出。第一个 p (1≤p≤k) 查询 q1,q2,…,qp 是明确提供的。对于从 p+1 到 k 的查询, q j = ( q j − 1 ⋅ a + b ) q_{j}=(q_{j−1}⋅a+b)%c qj=(qj1a+b)

打印所有查询答案的异或。

输入
第一行包含两个整数 n 和 m (2≤n≤50; n−1≤m≤300)——图中的顶点数和边数。

接下来的 m 行中的每一行都包含对无向边的描述:三个整数 v 、 u 和 w ( 1 ≤ v , u ≤ n ; v ≠ u ; 0 ≤ w ≤ 1 0 8 ) v、u 和 w (1≤v,u≤n; v≠u; 0≤w≤10^8) vuw(1v,un;v=u;0w108)——边连接的顶点及其权重。请注意,一对顶点之间可能有多个边。边形成一个连通图。

下一行包含五个整数 p,k,a,b 和 c ( 1 ≤ p ≤ 1 0 5 ; p ≤ k ≤ 1 0 7 ; 0 ≤ a , b ≤ 1 0 8 ; 1 ≤ c ≤ 1 0 8 ) (1≤p≤10^5; p≤k≤10^7; 0≤a,b≤10^8; 1≤c≤10^8) (1p105;pk107;0a,b108;1c108) — 明确提供的查询数,查询的总数和生成查询的参数。

下一行包含 p 个整数 q 1 , q 2 , … , q p ( 0 ≤ q j < c ) q_{1},q_{2},…,q_{p} (0≤q_{j}<c) q1,q2,,qp(0qj<c) — 前 p 个查询。

输出
打印一个整数——所有查询答案的异或

题解

考虑一个使用 Kruskal 算法寻找 MST(多生成树)的简单解决方案。给定一些 x,按照 |wi−x| 的升序排列边并一一处理。

仔细看安排。在 x=0 时,边缘按 wi 排序。当 x 增加时,排列如何变化?一些边将会交换位置。

考虑一对具有不同权重 w1 和 w2 (w1<w2) 的边。只要 x 比 w2 更接近 w1,边 1 就会在排列中的边2 之前。因此,对于直到 (w1+w2)/2 的所有 x,边1 都在边 2 之前。对于从 (w1+w2)/2 开始的所有 x,边缘 2 在边缘 1 之前。

这告诉我们,每对具有不同权重的边将恰好交换一次。所以最多会有 O(m2) 交换。最多是 O(m2) 不同的安排。它们中的每一个都对应于某个范围的 x。

我们可以提取所有排列的 x 的范围,并在每个范围的开头计算 MST。我们还可以通过二分搜索从查询中找到对应于某个 x 的排列。

但是,仅知道 MST 在范围开始时的权重是不够的。边的权重在该范围内稍后发生变化,我们无法预测如何。一些边的权重增加,一些减少。

首先,让我们添加更多范围。我们希望每条边在整个范围内都以相同的方式表现:要么一直增加,要么一直减少。如果我们还将所有 i 的 x=wi 添加到 MST 计算中,这将成立。

其次,让我们为每个范围存储另一个值:权重增加的边数。

TL 应该足够自由,您可以对每个 MST 计算的边缘进行排序,从而得到 O(m2(mlogm+nlogn)+klogm) 解决方案。您还可以将第一部分优化为 O(m3)。

#include <bits/stdc++.h>

#define forn(i, n) for (int i = 0; i < int(n); i++)

using namespace std;

struct edge{
	int v, u, w;
};

vector<int> pr, rk;

int getp(int a){
	return a == pr[a] ? a : pr[a] = getp(pr[a]);
}

bool unite(int a, int b){
	a = getp(a), b = getp(b);
	if (a == b) return false;
	if (rk[a] < rk[b]) swap(a, b);
	rk[a] += rk[b];
	pr[b] = a;
	return true;
}

int main() {
	int n, m;
	scanf("%d%d", &n, &m);
	pr.resize(n);
	rk.resize(n);
	vector<edge> es(m);
	forn(i, m){
		scanf("%d%d%d", &es[i].v, &es[i].u, &es[i].w);
		--es[i].v, --es[i].u;
		es[i].w *= 2;
	}
	vector<int> ev(1, 0);
	forn(i, m) forn(j, i + 1) ev.push_back((es[i].w + es[j].w) / 2);
	sort(ev.begin(), ev.end());
	ev.resize(unique(ev.begin(), ev.end()) - ev.begin());
	vector<long long> base;
	vector<int> cnt;
	for (int x : ev){
		sort(es.begin(), es.end(), [&x](const edge &a, const edge &b){
			int wa = abs(a.w - x);
			int wb = abs(b.w - x);
			if (wa != wb) return wa < wb;
			return a.w > b.w;
		});
		forn(i, n) pr[i] = i, rk[i] = 1;
		long long cur_base = 0;
		int cur_cnt = 0;
		for (const auto &e : es) if (unite(e.v, e.u)){
			cur_base += abs(e.w - x);
			cur_cnt += x < e.w;
		}
		base.push_back(cur_base);
		cnt.push_back(cur_cnt);
	}
	int p, k, a, b, c;
	scanf("%d%d%d%d%d", &p, &k, &a, &b, &c);
	int x = 0;
	long long ans = 0;
	forn(q, k){
		if (q < p) scanf("%d", &x);
		else x = (x * 1ll * a + b) % c;
		int y = upper_bound(ev.begin(), ev.end(), 2 * x) - ev.begin() - 1;
		ans ^= (base[y] + (n - 1 - 2 * cnt[y]) * 1ll * (2 * x - ev[y])) / 2;
	}
	printf("%lld\n", ans);
	return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值