分治法

         分治法:将原有问题分解为几个规模较小但类似于原有问题的子问题,递归地求解这些子问题,然后在合并这些子问题的解来建立原有问题的解。

    分治模式在每层递归时都有三个步骤:

     分解,解决,合并。


       归并排序的算法就是典型的分治法。

分解:分解待排序的n个元素序列成n/2的两个子序列。

解决:使用归并排序递归地排序两个子序列。

合并:合并两个已排序的子序列以产生已排序的答案。

归并排序代码:

void merge(int a[],int p,int q,int r)
{
	int L[1000],R[100];
	int n1=q-p+1;
	int n2=r-q;
	int i=0,j=0;
	for(i;i<n1;i++)
	{
		L[i]=a[p+i];
	}
	for (j;j<n2;j++)
	{
		R[j]=a[q+j+1];
	}
	L[n1]=R[n2]=100000;
	int k=p;
	i=j=0;
	for(k;k<=r;k++)
	{
		if(L[i]<=R[j])
		{
			a[k]=L[i];
			i++;
		}
		else
		{
			a[k]=R[j];
			j++;
		}
	}
}
void merge_Sort(int a[],int p,int r)
{
	if (p<r)
	{
		int q=(p+r)/2;
		merge_Sort(a,p,q);
		merge_Sort(a,q+1,r);
		merge(a,p,q,r);
	}
}
int main()
{
	int a[1000];
	int n;
	cin>>n;
	for (int i = 1; i <=n; i++)
	{
		cin>>a[i];
	}
	merge_Sort(a,1,n);
	for (int i = 1; i <=n; i++)
	{
		cout<<a[i]<<" ";
	}
	cout<<endl;
	return 0;
}

分析分治算法:

T(n)为运行时间。

假设把原问题分解成a个子问题,每个子问题的规模是原问题的1/b。

那么得到递归式

T(n)=o(1) n<=c

              aT(n/b)+D(n)+C(n) 其他

D(n)为分解子问题所需的时间,C(n)合并子问题所需的时间

c为常量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值