POJ3489 Knapsack I

题目链接:http://poj.org/problem?id=3489

题目描述:

给定n个数以及x,k,这n个数可以分成k^t( 0<=t )份,比如说其中一个数为6,k为4,可以分为6/4 = 1.5,或者分成6/(4^2) = 0.375,问这些数能否加起来和为x。

即满足:(假设n个数为t1….tn)

x1*(t1/(k^y1)) + x2*(t2/(k^y2))+…………xn*(tn/(k^yn)) = x

关键点就是:

有解的充要条件是,

x能够整除d,(其中d为n个数公约数除以其与k^t的公约数),其中t保证充分大。

推导过程不是很复杂(省略)

推荐一个有详细证明的:

http://www.cppblog.com/menjitianya/archive/2011/04/15/144291.html

#include<cstdio>
#include<iostream>
using namespace std ;

const int MAXM = 100000 ;
int num, pri[MAXM] ;

int gcd(int a, int b){
	if( b == 0 ){
		return a ;
	}
	else
		return gcd(b,a%b) ;
}
//
int get(int n){
	num = 0 ;
	for( int i = 2; i*i <= n; i++ ){
		if( n % i == 0 ){
			pri[num++] = i ;
		}
		while( n % i == 0 ){
			n /= i ;
		}
	}
	if( n != 1 ) pri[num++] = n ;
	return num ;
}
///
int main(){
	int n, x, k, temp, d = 0 ;
	bool res ;
	while( cin >> n >> x >> k ){
		d = 0 ;
		for( int i = 0; i < n; i++ ){
			scanf("%d",&temp) ;
			if( i == 0 )
				d = temp ;
			else{
				d = gcd(d,temp) ;
			} 
		}
		get(k) ;
		res = true ;
		for( int i = 0; i < num; i++ ){
			while( d % pri[i] == 0 ){
				d /= pri[i] ;
			}
		}
		if( x % d != 0 )
			res = false ; 
		if( res )
			cout << "Yes\n" ;
		else
			cout << "No\n" ;
	}
	return 0 ;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值