Knapsack problem poj 3624

265 篇文章 1 订阅
15 篇文章 0 订阅

 

Charm Bracelet

Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 49676 Accepted: 20994

Description

Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weight Wi (1 ≤ Wi ≤ 400), a 'desirability' factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880).

Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.

Input

* Line 1: Two space-separated integers: N and M
* Lines 2..N+1: Line i+1 describes charm i with two space-separated integers: Wi and Di

Output

* Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints

Sample Input

4 6
1 4
2 6
3 12
2 7

Sample Output

23

Source

USACO 2007 December Silver

Python Version:

def knapsack(w, v, m):
    n = len(w)
    dp = [[0 for j in range(m + 1)] for i in range(n + 1)]
    #背包问题是典型的动态规划 dp[i][j]表示用下标是0..i的背包(具体某个背包可能限定只用一次,也可能不限制用几次),总重量不超过j,能够达到的最大价值
    #如何确定具体某个背包用一次还是用多次?取决于dp[i][j]的j的刷新顺序
    #如果dp[i][j]刷新后的结果可以被dp[i][j+w[i]]针对i的背包来继续利用,就是放回
    #反之,就是不放回
    for i in range(0, n):
        for j in range(w[i], m+1): #放回
            dp[i][j] = max(dp[i][j], dp[i][j-w[i]]+v[i])
            dp[i+1][j] = dp[i][j]

        # for j in range(w[i], m+1):  # 不放回,不可以利用本轮之前结果
        #     dp[i+1][j] = max(dp[i][j], dp[i][j - w[i]] + v[i])

        # for j in range(m, w[i]-1, -1):  # 不放回,不可以利用本轮之前结果
        #     dp[i+1][j] = max(dp[i][j], dp[i][j - w[i]] + v[i])

    return dp[n][m]

if __name__ == '__main__':
    w = [1, 3, 5]
    v = [5, 3, 1]
    res = knapsack(w, v, 40)
    print(res)

 

/* 背包问题简洁版 ,改一下刷新的方向就是完全背包或者是不完全背包,建议对照原版看,不明白打印二维数组*/
#include<iostream>
#include<stdio.h>
using namespace std;
int mm[ 12881 ]={0};
int w[3403];
int v[3403];

int main()
{
	int n,m,i,j;
	scanf("%d%d",&n,&m);
	for(i=0;i<n;i++)
		scanf("%d%d",&w[i],&v[i]);
    //mm[i][j] 表示选择在[i..n-1]容量为j情况下的最大值,但事实上用一维存就够了
      
    for( i=n-1;i>=0;i-- )  
    {
		//for( j=m;j>=w[i];j-- ) //从这个方向刷新是上轮的,每个宝贝at most once                                              
		//for( j=w[i];j<=m;j++ )  //从这个方向刷新的是本轮的 ,每个宝贝选择不限次数 
		for( j=m;j>=w[i];j-- ) //从这个方向刷新是上轮的,每个宝贝at most once
			mm[j]=max( mm[j] , mm[ j-w[ i ] ] +v[i] );
    }
	printf("%d\n",mm[ m ]);
	
	system("pause");
	return 0;
}

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值