FINS5542 exercise 2


FINS5542 Assignment 2
Date Due: 11pm 12 July, with electronic submission via the course
website.
1. In this question we will conduct a backtesting exercise for the 1997
year. For each trading day in 1997 we must graph the 99% VaR that
was computed 10 trading days before and we must also graph the
realised loss in the portfolio that occurs over this same period.
One is required to produce two graphs. The first graph should be the
backtesting of the VaR method under normality. The second graph
should be the backtesting of the VaR method under historical sim-
ulation of daily changes in prices. Finally, one should interpret the
findings from both of these graphical displays, (noting presentation
quality is important).
For these exercises, assume that we hold a portfolio of 15 assets,
namely aan2, aan3, aan4, aan5 aan6, aan7, aan8, aan9, aan10, aan11,
aan14, aan15, aan17, aan18 and aan19 where $2,000,000 dollars was
the value of our holdings in each of the stocks ten trading days before
the first trading day in 1997. i.e. On 17 December 1996, the value of
our portfolio is $30,000,000. Also assume that the number of shares
we hold in each of these stocks does not change over the time frame
of our back-testing exercise. Finally, in computing the VaR estimates
one should use the last 800 changes in prices. The data is located on
the fins5542 Moodle page. See last page, for variable names.
In addition to printing out the Excel graphs, one should also print out
the Ox computer code.
[20 marks (for each method, 2 marks for coding, 4 marks for graph-
ing, 4 marks for write-up) ]
1
2. In this question we will conduct a backtesting exercise for a portfolio
of 6 stocks for the 2021 year. For each trading day in 2021 we must
graph the 99% VaR that was computed 10 trading days before and we
must also graph the realised loss in the portfolio that occurs over this
same period.
One is required to produce two graphs. The first graph should be the
backtesting of the VaR method under normality. The second graph
should be the backtesting of the VaR method under historical sim-
ulation of daily changes in prices. Finally, one should interpret the
findings from both of these graphical displays, (noting presentation
quality is important).
For these exercises, assume that $10,000,000 dollars was the value of
our holdings in each of the following 6 U.S. companies, Coca-Cola
Co., Home Depot Inc., Intel Corp., McDonald  s Corp., Walt Disney
Co. and Walmart Inc., (sourced from the CRSP database), ten trading
days before the first trading day in 2021. Also assume that the number
of shares we hold in each of these stocks does not change over the time
frame of our back-testing exercise. Finally, in computing the VaR
estimates one should use the last 900 changes in prices.
In addition to printing out the Excel graphs, one should also print out
the Ox computer code.
[30 marks (for each method, 3 marks for coding, 3 marks for data
description, 4 marks for graphing, 5 marks for write-up) ]
3. Discuss, in less than 1200 words, the limitations of VaR and Ex-
pected Shortfall, relating these to the results you obtained above in
questions 1 and 2.
Please include appropriate references, with a reference section. Both
content and writing quality are key criteria of equal importance.
[30 marks]
2
Variable Name
aan1 CISCO SYSTEMS INC
aan2 MICROSOFT CORP
aan3 INTEL CORP
aan4 TEXAS INSTRUMENTS INC
aan5 SPRINT CORP
aan6 AMGEN INC
aan7 INTERPUBLIC GROUP COS INC
aan8 MELLON BANK CORP
aan9 WARNER LAMBERT CO
aan10 BRISTOL MYERS SQUIBB CO
aan11 ENRON CORP
aan12 GENERAL ELECTRIC CO
aan13 TIME WARNER INC
aan14 EXXON CORP
aan15 DELL COMPUTER CORP
aan16 AMERICAN EXPRESS CO
aan17 SUN MICROSYSTEMS INC
aan18 CORNING INC
aan19 FORD MOTOR CO DEL
 

内容概要:本文为《科技类企业品牌传播白皮书》,系统阐述了新闻媒体发稿、自媒体博主种草与短视频矩阵覆盖三大核心传播策略,并结合“传声港”平台的AI工具与资源整合能力,提出适配科技企业的品牌传播解决方案。文章深入分析科技企业传播的特殊性,包括受众圈层化、技术复杂性与传播通俗性的矛盾、产品生命周期影响及2024-2025年传播新趋势,强调从“技术输出”向“价值引领”的战略升级。针对三种传播方式,分别从适用场景、操作流程、效果评估、成本效益、风险防控等方面提供详尽指南,并通过平台AI能力实现资源智能匹配、内容精准投放与全链路效果追踪,最终构建“信任—种草—曝光”三位一体的传播闭环。; 适合人群:科技类企业品牌与市场负责人、公关传播从业者、数字营销管理者及初创科技公司创始人;具备一定品牌传播基础,关注效果可量化与AI工具赋能的专业人士。; 使用场景及目标:①制定科技产品全生命周期的品牌传播策略;②优化媒体发稿、KOL合作与短视频运营的资源配置与ROI;③借助AI平台实现传播内容的精准触达、效果监测与风险控制;④提升品牌在技术可信度、用户信任与市场影响力方面的综合竞争力。; 阅读建议:建议结合传声港平台的实际工具模块(如AI选媒、达人匹配、数据驾驶舱)进行对照阅读,重点关注各阶段的标准化流程与数据指标基准,将理论策略与平台实操深度融合,推动品牌传播从经验驱动转向数据与工具双驱动。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值