人工智能基础设施是指支持人工智能(AI)技术开发、训练、部署和应用的全套硬件、软件、数据及网络资源。它是构建和运行AI系统的底层支撑体系,为算法模型、数据处理、算力分配、应用开发等提供必要的基础条件。以下是其核心组成部分和关键作用:
1. 核心组成部分
(1)硬件基础设施
- 计算资源:高性能计算设备(如GPU、TPU、AI加速芯片)提供大规模并行计算能力,支撑深度学习模型的训练与推理。
- 数据中心:提供大规模存储、分布式计算和弹性资源调度,支持云端AI服务。
- 边缘设备:部署在终端设备(如传感器、手机、IoT设备)上的轻量化AI算力,支持实时推理。
(2)软件与框架
- 开发框架:如TensorFlow、PyTorch、Keras等,提供模型构建、训练和优化的工具库。
- 算法库:预训练模型(如GPT、ResNet)、开源算法和工具包(如Hugging Face)。
- 分布式系统:支持大规模训练(如Horovod、Kubernetes)和自动化部署(如Docker)。