人工智能对仪控设备管理的帮助

现在两会上提出发展新质生产力,结合自己过去大半年在工作中使用人工智能的经验,粗浅的谈一下自己对人工智能对仪控设备管理的帮助。

人工智能,尤其是现在LLM类大模型的兴起,目前我觉得最大的影响就是显著的降低了学习新东西的应用曲线。比如我作为一个非科班出身的人,最近在做仪控图纸的数字化。把以前厂家给的,以PDF格式为主的,非结构化的数据。使用数字化的方式转换成图、链的结构,便于实现仪控信号从头到尾的自动梳理。

在做这个工作的时候,我发现在GitHub copilot和文心一言的帮助下,我很快的可以利用OpenCV等框架做出DEMO代码。效果看上去还行。

而同时,这个工作还有一波专业IT的承包商在干活。给我的感觉就是他们效率还不如我。即便在我给出Python代码的情况下。虽然这里面我估计有不少因素是管理流程上的问题。但另一方面我觉得最大的问题是,在传统的软件开发流程下,应对这种非标准化的需求时。传统的方案是需求方,也就是我这种非IT行业人士提出需求。这个需求一般人会提的很粗略,比如把图纸变成数字化的链路这就一句话。但是图里面什么符号是什么意思,哪些数据重要需要提取,哪些不重要搞不定就算了,画图时有什么样的规律等信息。一般业务人员也说不完整(图纸是乙方比如西门子画,画的规则并没有成型文档移交甲方,是靠甲方多年经验和当初的简单培训理解的)。这就需要IT的需求人员和业务的需求提出方反复开会讨论。形成一份需求文档,然后给到编码人员编码、测试。这个过程还会有很多的反复,因为很多规则得试一下发现不行再调整。

最好的方法就是有人能即看懂图纸,也会写代码。这在以前很难,但有了人工智能后。现在的人工智能至少在帮助人写代码方面做的还不错。那只要看得懂图纸的人,有少量编程基础,能把需求写清楚,AI就能做剩下的事情。发现运行结果不理想,马上就可以改需求,代码也很快就改了。而不是要反复的约会议,凑时间,扯皮分工。

推广开来,在仪控设备管理领域还有很多以前成本很高的非标准化的、需要多专业协同的工作。比如现在各种火热的通过对设备增加一些监视手段,获取到一堆数据后进行大数据分析,评估设备的状态,也就是PHM等项目。这些在以前需要设备专家、软件专家、电子硬件专家,甚至还需要机械、电气专业等协作才能完成。中间必然需要大量沟通扯皮的事情。

如果人工智能进一步完善,其中相对不敏感的部分。比如代码可能对优化不敏感,跑得起来就行。硬件可能对功耗、体积不敏感,跑的起来就行。那人工智能可能很快可以根据需求给出一个跑得起来的方案。再加上现在很多硬件的模块化设计思路。这种非标的监测设备开发可能以后一两个工程师就能做出来,至少是做出原型。然后根据原型写好需求后,再找专业的人优化,效率可能会比一开始一帮人一起各种乱试要好得多。

考虑到LLM模型,各种文生图模型就是通过建立文字与输出的对应关系。那么传统行业以后更好的利用上人工智能模型的重点就是做数据治理,先建立好大量高质量的标签和对应关系。系统训练后,就可以摆脱这种重复劳动工作。比如电路板方案如果把需求文档和输出的PCB文件构建形成对应关系,当需要一个新的电路时,只需要把需求说清楚,AI自己就做出PCB文件。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值