描述:
给定一个数字三角形,找到从顶部到底部的最小路径和。每一步可以移动到下面一行的相邻数字上。
注意事项:如果你只用额外空间复杂度O(n)的条件下完成可以获得加分,其中n是数字三角形的总行数。
样例:比如,给出下列数字三角形:
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
从顶到底部的最小路径和为11 ( 2 + 3 + 5 + 1 = 11)。
思路:
通过思考,我们得到了如下规律;
我们建立一个一维数组f,f[n]表示当遍历到第m行时,三角形中第m行第n个数为终点的最小路径和,其更新计算方法为f[n]=min(f[n-1](上一行)+f[n](上一行)],遍历完三角形后得到的f[n]中的最小值即为最小路径和。
AC代码:
class Solution {
public:
/*
* @param triangle: a list of lists of integers
* @return: An integer, minimum path sum
*/
int minimumTotal(vector<vector<int>> &triangle) {
// write your code here
int f[9999999];
int m=triangle.size();
if(m==0)return 0;
int n=triangle[m-1].size();
if(n==0)return 0;
int minx;
int i,j;
f[0]=triangle[0][0];
for(i=1;i<m;i++)
for(j=i;j>=0;j--)
{
if(j-1<0)
f[j]=f[j]+triangle[i][j];
else if(j==i)
f[j]=f[j-1]+triangle[i][j];
else
f[j]=min(f[j],f[j-1])+triangle[i][j];
}
minx=f[0];
for(j=0;j<n;j++)
minx=min(minx,f[j]);
return minx;
}
};